Abstract

We introduce a label-free method for detecting high-grade prostatic intraepithelial neoplasia (HGPIN) in unstained biopsies. We image this condition based on the identification of basal cells in biopsies that otherwise would resemble prostate cancer by unassisted histologic examination. Gradient field microscopy (GFM) is used as a label-free imaging method which increases the contrast of a transparent sample by taking the first-order phase derivative that is very sensitive to rapid refractive index changes. GFM is able to image the basal cell layers in HGPIN biopsies because of their rapid refractive index changes at the periphery of small glandular structures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill, 2011).
  2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef]
  3. N. T. Shaked, Y. Z. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [CrossRef]
  4. C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
    [CrossRef]
  5. C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
    [CrossRef]
  6. W. G. Rothstein, “Pathology: the evolution of a specialty in American medicine,” Med. Care 17, 975–988 (1979).
    [CrossRef]
  7. A. M. Marchevsky and M. R. Wick, “Evidence-based medicine, medical decision analysis, and pathology,” Human Pathol. 35, 1179–1188 (2004).
    [CrossRef]
  8. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016 (2011).
    [CrossRef]
  9. Z. Wang, G. Popescu, K. V. Tangella, and A. Balla, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
    [CrossRef]
  10. T. Kim, S. Sridharan, and G. Popescu, “Gradient field microscopy of unstained specimens,” Opt. Express 20, 6737–6745 (2012).
    [CrossRef]
  11. T. Kim and G. Popescu, “Laplace field microscopy for label-free imaging of dynamic biological structures,” Opt. Lett. 36, 4704–4706 (2011).
    [CrossRef]
  12. M. Pluta, Advanced Light Microscopy (Polish Scientific Publishers, 1988).
  13. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
    [CrossRef]
  14. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
    [CrossRef]
  15. S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.
  16. J. I. Epstein and G. J. Netto, Biopsy Interpretation of the Prostate (Lippincott Williams & Wilkins, 2007).
  17. J. I. Epstein and M. Herawi, “Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care,” J. Urol. 175, 820–834 (2006).
    [CrossRef]

2012

2011

2009

2006

J. I. Epstein and M. Herawi, “Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care,” J. Urol. 175, 820–834 (2006).
[CrossRef]

C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef]

2005

2004

A. M. Marchevsky and M. R. Wick, “Evidence-based medicine, medical decision analysis, and pathology,” Human Pathol. 35, 1179–1188 (2004).
[CrossRef]

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

1979

W. G. Rothstein, “Pathology: the evolution of a specialty in American medicine,” Med. Care 17, 975–988 (1979).
[CrossRef]

1955

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef]

Allman, B. E.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Balla, A.

Z. Wang, G. Popescu, K. V. Tangella, and A. Balla, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[CrossRef]

Bellair, C. J.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Bernet, S.

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

Colomb, T.

Cuche, E.

Curl, C. L.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Delbridge, L. M. D.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Depeursinge, C.

Ding, H.

Emery, Y.

Epstein, J. I.

J. I. Epstein and M. Herawi, “Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care,” J. Urol. 175, 820–834 (2006).
[CrossRef]

J. I. Epstein and G. J. Netto, Biopsy Interpretation of the Prostate (Lippincott Williams & Wilkins, 2007).

Fürhapter, S.

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

Gillette, M. U.

Harris, P. J.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Herawi, M.

J. I. Epstein and M. Herawi, “Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care,” J. Urol. 175, 820–834 (2006).
[CrossRef]

Jesacher, A.

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

Kim, M. K.

C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef]

Kim, T.

Magistretti, P. J.

Mann, C. J.

C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef]

Marchevsky, A. M.

A. M. Marchevsky and M. R. Wick, “Evidence-based medicine, medical decision analysis, and pathology,” Human Pathol. 35, 1179–1188 (2004).
[CrossRef]

Marquet, P.

Maurer, C.

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

McIntyre, T. J.

Millet, L. J.

Mir, M.

Netto, G. J.

J. I. Epstein and G. J. Netto, Biopsy Interpretation of the Prostate (Lippincott Williams & Wilkins, 2007).

Nugent, K. A.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy (Polish Scientific Publishers, 1988).

Popescu, G.

Rappaz, B.

Rinehart, M. T.

Ritsch-Marte, M.

T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Differential interference contrast imaging using a spatial light modulator,” Opt. Lett. 34, 2988–2990 (2009).
[CrossRef]

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

Roberts, A.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Rogers, J. A.

Rothstein, W. G.

W. G. Rothstein, “Pathology: the evolution of a specialty in American medicine,” Med. Care 17, 975–988 (1979).
[CrossRef]

Shaked, N. T.

Sridharan, S.

Tangella, K. V.

Z. Wang, G. Popescu, K. V. Tangella, and A. Balla, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[CrossRef]

Unarunotai, S.

Wang, Z.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016 (2011).
[CrossRef]

Z. Wang, G. Popescu, K. V. Tangella, and A. Balla, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[CrossRef]

Wax, A.

Wick, M. R.

A. M. Marchevsky and M. R. Wick, “Evidence-based medicine, medical decision analysis, and pathology,” Human Pathol. 35, 1179–1188 (2004).
[CrossRef]

Yu, L. F.

C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef]

Zhu, Y. Z.

Biomed. Eng. Online

C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef]

Clin. Exp. Pharmacol. Physiol.

C. L. Curl, C. J. Bellair, P. J. Harris, B. E. Allman, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Quantitative phase microscopy: a new tool for investigating the structure and function of unstained live cells,” Clin. Exp. Pharmacol. Physiol. 31, 896–901 (2004).
[CrossRef]

Human Pathol.

A. M. Marchevsky and M. R. Wick, “Evidence-based medicine, medical decision analysis, and pathology,” Human Pathol. 35, 1179–1188 (2004).
[CrossRef]

J. Biomed. Opt.

Z. Wang, G. Popescu, K. V. Tangella, and A. Balla, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16, 116017 (2011).
[CrossRef]

J. Urol.

J. I. Epstein and M. Herawi, “Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care,” J. Urol. 175, 820–834 (2006).
[CrossRef]

Med. Care

W. G. Rothstein, “Pathology: the evolution of a specialty in American medicine,” Med. Care 17, 975–988 (1979).
[CrossRef]

Opt. Express

Opt. Lett.

Science

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955).
[CrossRef]

Other

S. Fürhapter, A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Spiral phase microscopy,” in Advances in Imaging and Electron Physics, H. Peter, ed. (Elsevier, 2007), pp. 1–56.

J. I. Epstein and G. J. Netto, Biopsy Interpretation of the Prostate (Lippincott Williams & Wilkins, 2007).

M. Pluta, Advanced Light Microscopy (Polish Scientific Publishers, 1988).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the GFM setup. The components of a bright field microscope, Olympus 1×70, are shown in the figure (from the collector lens to the tube lens), along with the GFM module. Starting from the image plane of the bright field microscope, the Fourier lens L1 is located at one focal distance, 75 mm, and the SLM is located at another focal distance away from L1. The second Fourier lens L2 is located at one focal distance, 150 mm, away from SLM, and the detector is located at another focal distance behind L2. Inset shows the mask projected onto SLM and its vertical profile showing the sinusoidal function.

Fig. 2.
Fig. 2.

Hematoxylin and eosin stained slice of a tissue showing the basal cell layer. The flat layer of cells marked yellow between the epithelium and stroma area are the basal cells.

Fig. 3.
Fig. 3.

Images of HGPIN biopsies: (a) GFM image and (b) SLIM image.

Fig. 4.
Fig. 4.

Images of 12 different HGPIN biopsies taken under GFM with 100×/1.4 NA oil-immersion objective. Each image is produced by stitching over 100 separate images.

Fig. 5.
Fig. 5.

GFM (left column) and SLIM (right column) images of HGPIN biopsies showing the areas with basal cells. Images in the same row show the exact same region for comparison between GFM and SLIM. Basal cells are marked yellow in the GFM images and red in the SLIM images for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FT[sin(aky)U(kx,ky)]=[δ(x,ya)δ(x,y+a)2i]U(x,y)iaU(x,y)y.
I(x,y)=|U(x,y)+iaU(x,y)y|212aϕ(x,y)y.

Metrics