Abstract

This paper proposes a first attempt to visualize and analyze the vibrations induced by a bone-conduction device and propagating at the surface of the skin of a human face. The method is based on a new approach in a so-called quasi-time-averaging regime, resulting in the retrieval of the vibration amplitude and phase from a sequence of digital Fresnel holograms recorded with a high image rate. The design of the algorithm depends on the ratio between the exposure time and the vibration period. The results show the propagation of vibrations at the skin surface, and quantitative analysis is achieved by the proposed approach.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Akademie Verlag Series in Optical Metrology(Akademie Verlag Gmbh, 1996).
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  3. R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965).
    [CrossRef]
  4. K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965).
    [CrossRef]
  5. B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968).
    [CrossRef]
  6. P. A. Fryer, “Vibration analysis by holography,” Rep. Prog. Phys. 33, 489–532 (1970).
    [CrossRef]
  7. O. J. Lokberg, “Vibration analysis by holography,” Phys. Norv. 4, 257–264 (1970).
  8. S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972).
    [CrossRef]
  9. C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
    [CrossRef]
  10. P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).
  11. J. Hladky, “Application of holography in analysis of vibrations of loudspeaker diaphragms,” J. Audio Eng. Soc. 22, 247–250 (1974).
  12. H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
    [CrossRef]
  13. O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
    [CrossRef]
  14. P. C. Gupta and K. Singh, “Characteristic fringe function for time-average holography of periodic non sinusoidal vibrations,” Appl. Opt. 14, 129–133 (1975).
  15. R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977).
    [CrossRef]
  16. H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983).
    [CrossRef]
  17. E. Vikhagen, “Vibration measurement using phase-shifting TV-holography and digital image-processing,” Opt. Commun. 69, 214–218 (1989).
    [CrossRef]
  18. B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
    [CrossRef]
  19. C. Jonathan and B. M. Khorana, “Contrast of the vibration fringes in time-averaged electronic speckle-pattern interferometry: effect of speckle averaging,” Appl. Opt. 31, 1863–1870 (1992).
    [CrossRef]
  20. C. S. Vikram, “Frequency-shifting for numerical analysis in time-average holography of vibrations,” Optik 93, 155–156 (1993).
  21. G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998).
    [CrossRef]
  22. A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
    [CrossRef]
  23. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003).
    [CrossRef]
  24. F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
    [CrossRef]
  25. P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time-averaging in digital Fresnel holography,” Appl. Opt. 44, 337–343 (2005).
    [CrossRef]
  26. D. N. Borza, “High-resolution time average electronic holography for vibration measurement,” Opt. Lasers Eng. 41, 515–527 (2004).
    [CrossRef]
  27. D. N. Borza, “Mechanical vibration measurement by high-resolution time-averaged digital holography,” Meas. Sci. Technol. 16, 1853–1864 (2005).
    [CrossRef]
  28. N. Demoli and D. Vukicevic, “Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry,” Opt. Lett. 29, 2423–2425 (2004).
    [CrossRef]
  29. N. Demoli and I. Demoli, “Measuring surface vibrations of musical instruments using an inexpensive digital holography device,” Opt. Eng. 44, 090502 (2005).
    [CrossRef]
  30. N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812–4817 (2005).
    [CrossRef]
  31. A. Asundi and V. R. Singh, “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006).
    [CrossRef]
  32. D. N. Borza, “Full-field vibration amplitude recovery from high-resolution time-averaged speckle interferograms and digital holograms by regional inverting of the Bessel function,” Opt. Lasers Eng. 44, 747–770 (2006).
    [CrossRef]
  33. U. P. Kumar, Y. Kalyani, and K. N. Mohan, “Time-average TV holography for vibration fringe analysis,” Appl. Opt. 48, 3094–3101 (2009).
    [CrossRef]
  34. K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
    [CrossRef]
  35. P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
    [CrossRef]
  36. U. P. Kumar, K. N. Mohan, and M. P. Kothiyal, “Time average vibration fringe analysis using Hilbert transformation,” Appl. Opt. 49, 5777–5786 (2010).
    [CrossRef]
  37. C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
    [CrossRef]
  38. D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
    [CrossRef]
  39. G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995).
    [CrossRef]
  40. G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
    [CrossRef]
  41. G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
    [CrossRef]
  42. G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
    [CrossRef]
  43. A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.
  44. J. Leval, P. Picart, J.-P. Boileau, and J.-C. Pascal, “Full field vibrometry with digital Fresnel holography,” Appl. Opt. 44, 5763–5771 (2005).
    [CrossRef]
  45. J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
    [CrossRef]
  46. J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
    [CrossRef]
  47. G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
    [CrossRef]
  48. C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
    [CrossRef]
  49. P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Tracking high amplitude auto-oscillations with digital Fresnel holograms,” Opt. Express 15, 8263–8274 (2007).
    [CrossRef]
  50. S. S. Munoz, F. Mendoza Santoyo, and M. del Socorro Hernandez-Montes, “3D displacement measurements of the tympanic membrane with digital holographic interferometry,” Opt. Express 20, 5613–5621 (2012).
    [CrossRef]
  51. F. Joud, F. Laloe, M. Atlan, J. Hare, and M. Gross, “Imaging a vibrating object by sideband digital holography,” Opt. Express 17, 2774–2779 (2009).
    [CrossRef]
  52. F. Joud, F. Verpillat, F. Laloë, M. Atlan, J. Hare, and M. Gross, “Fringe-free holographic measurements of large-amplitude vibrations,” Opt. Lett. 34, 3698–3700 (2009).
    [CrossRef]
  53. B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate laser Doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011).
    [CrossRef]
  54. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
    [CrossRef]
  55. C. Pérez-López, M. de la Torre-Ibarra, and F. Mendoza Santoyo, “Very high speed cw digital holographic interferometry,” Opt. Express 14, 9709–9715 (2006).
    [CrossRef]
  56. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analysis of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
    [CrossRef]
  57. C. Trillo, A. F. Doval, F. Mendoza-Santoyo, C. Pérez-López, M. de la Torre-Ibarra, and J. L. Deán, “Multimode vibration analysis with high-speed TV holography and a spatiotemporal 3D Fourier transform method,” Opt. Express 17, 18014–18025 (2009).
    [CrossRef]
  58. D. Aguayo, F. M. Mendoza Santoyo, M. de la Torre-Ibarra, M. D. Salas-Araiza, C. Caloca-Mendez, and D. A. Gutierrez Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Opt. Express 18, 5661–5667 (2010).
    [CrossRef]
  59. S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
    [CrossRef]
  60. K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.
  61. G. O. Rosvold and O. J. Lokberg, “Effect and use of exposure control in vibration analysis using TV holography,” Appl. Opt. 32, 684–691 (1993).
    [CrossRef]
  62. S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989).
    [CrossRef]
  63. P. Criton, “Expériences d’écoute par le toucher,” http://www.cnrs.fr/insis/recherche/docs-evenements/ecouter-autrement.pdf .
  64. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Education, 1996).
  65. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
    [CrossRef]
  66. T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
    [CrossRef]
  67. J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).

2012

2011

B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate laser Doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011).
[CrossRef]

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

2010

D. Aguayo, F. M. Mendoza Santoyo, M. de la Torre-Ibarra, M. D. Salas-Araiza, C. Caloca-Mendez, and D. A. Gutierrez Hernandez, “Insect wing deformation measurements using high speed digital holographic interferometry,” Opt. Express 18, 5661–5667 (2010).
[CrossRef]

K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
[CrossRef]

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
[CrossRef]

U. P. Kumar, K. N. Mohan, and M. P. Kothiyal, “Time average vibration fringe analysis using Hilbert transformation,” Appl. Opt. 49, 5777–5786 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

2003

P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Time averaged digital holography,” Opt. Lett. 28, 1900–1902 (2003).
[CrossRef]

F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
[CrossRef]

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

2002

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
[CrossRef]

2000

A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
[CrossRef]

1999

1998

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998).
[CrossRef]

1997

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

1996

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

1995

G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995).
[CrossRef]

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
[CrossRef]

1994

1993

C. S. Vikram, “Frequency-shifting for numerical analysis in time-average holography of vibrations,” Optik 93, 155–156 (1993).

D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

G. O. Rosvold and O. J. Lokberg, “Effect and use of exposure control in vibration analysis using TV holography,” Appl. Opt. 32, 684–691 (1993).
[CrossRef]

1992

1990

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

1989

E. Vikhagen, “Vibration measurement using phase-shifting TV-holography and digital image-processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989).
[CrossRef]

1984

J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).

1983

H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983).
[CrossRef]

1977

R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977).
[CrossRef]

1976

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

1975

1974

P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).

J. Hladky, “Application of holography in analysis of vibrations of loudspeaker diaphragms,” J. Audio Eng. Soc. 22, 247–250 (1974).

H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
[CrossRef]

1973

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

1972

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972).
[CrossRef]

1970

P. A. Fryer, “Vibration analysis by holography,” Rep. Prog. Phys. 33, 489–532 (1970).
[CrossRef]

O. J. Lokberg, “Vibration analysis by holography,” Phys. Norv. 4, 257–264 (1970).

1968

B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968).
[CrossRef]

1965

R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965).
[CrossRef]

K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965).
[CrossRef]

Abendoth, H.

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

Adams, M.

T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Aguayo, D.

Akhter, N.

K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
[CrossRef]

Anderson, D. J.

D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Asundi, A.

Atlan, M.

Barton, J. S.

Bies, C. D. A.

R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977).
[CrossRef]

Boileau, J.-P.

Borza, D. N.

D. N. Borza, “Full-field vibration amplitude recovery from high-resolution time-averaged speckle interferograms and digital holograms by regional inverting of the Bessel function,” Opt. Lasers Eng. 44, 747–770 (2006).
[CrossRef]

D. N. Borza, “Mechanical vibration measurement by high-resolution time-averaged digital holography,” Meas. Sci. Technol. 16, 1853–1864 (2005).
[CrossRef]

D. N. Borza, “High-resolution time average electronic holography for vibration measurement,” Opt. Lasers Eng. 41, 515–527 (2004).
[CrossRef]

Brown, G. C.

G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998).
[CrossRef]

Cable, P.

P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).

Caloca-Mendez, C.

Carniel, X.

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

Cernadas, D.

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Chalvidan, V.

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

Chambard, J. P.

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

Chang, H.-S.

K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
[CrossRef]

Dalmont, J.-P.

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
[CrossRef]

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Tracking high amplitude auto-oscillations with digital Fresnel holograms,” Opt. Express 15, 8263–8274 (2007).
[CrossRef]

de la Torre-Ibarra, M.

Deán, J. L.

del Socorro Hernandez-Montes, M.

Demoli, I.

N. Demoli and I. Demoli, “Measuring surface vibrations of musical instruments using an inexpensive digital holography device,” Opt. Eng. 44, 090502 (2005).
[CrossRef]

N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812–4817 (2005).
[CrossRef]

Demoli, N.

Dorheide, J.

H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983).
[CrossRef]

Dorrio, B. V.

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Doval, A. F.

C. Trillo, A. F. Doval, F. Mendoza-Santoyo, C. Pérez-López, M. de la Torre-Ibarra, and J. L. Deán, “Multimode vibration analysis with high-speed TV holography and a spatiotemporal 3D Fourier transform method,” Opt. Express 17, 18014–18025 (2009).
[CrossRef]

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Eggers, H.

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

Fernandez, J. L.

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Fessler, H.

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

Forre, B. M.

H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
[CrossRef]

Froening, P.

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

Fryer, P. A.

P. A. Fryer, “Vibration analysis by holography,” Rep. Prog. Phys. 33, 489–532 (1970).
[CrossRef]

Fu, Y.

Ganesan, A. R.

A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Education, 1996).

Gougeon, S.

Greivenkamp, J. E.

J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).

Gross, M.

Guimezanes, T.

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
[CrossRef]

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Tracking high amplitude auto-oscillations with digital Fresnel holograms,” Opt. Express 15, 8263–8274 (2007).
[CrossRef]

Gupta, P. C.

Gutierrez Hernandez, D. A.

Hand, D. P.

Hare, J.

Hazell, C. R.

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

Hinsch, K. D.

A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
[CrossRef]

Hladky, J.

J. Hladky, “Application of holography in analysis of vibrations of loudspeaker diaphragms,” J. Audio Eng. Soc. 22, 247–250 (1974).

Hogmoen, K.

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

Hoyer, H. E.

H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983).
[CrossRef]

Hu, Z. G.

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

Johansson, S.

S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989).
[CrossRef]

Jonathan, C.

Jones, J. D. C.

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
[CrossRef]

D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Joud, F.

Jüptner, W.

T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

Kalyani, Y.

Khanna, S. M.

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972).
[CrossRef]

Khorana, B. M.

Kim, K.-S.

K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
[CrossRef]

Kothiyal, M. P.

Kreis, T.

T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Akademie Verlag Series in Optical Metrology(Akademie Verlag Gmbh, 1996).

Kumar, U. P.

Laine, B.

F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
[CrossRef]

Laloe, F.

Laloë, F.

Leval, J.

Li, S.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

Liem, S. D.

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

Lokberg, O. J.

G. O. Rosvold and O. J. Lokberg, “Effect and use of exposure control in vibration analysis using TV holography,” Appl. Opt. 32, 684–691 (1993).
[CrossRef]

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
[CrossRef]

O. J. Lokberg, “Vibration analysis by holography,” Phys. Norv. 4, 257–264 (1970).

Lopez, C.

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Lopez, O.

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

Lu, B. X.

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

Meinlschmidt, P.

A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
[CrossRef]

Mendoza Santoyo, F.

Mendoza Santoyo, F. M.

Mendoza-Santoyo, F.

Mohan, K.

K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.

Mohan, K. D.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

Mohan, K. N.

Moore, A. J.

Mounier, D.

Munoz, S. S.

Oldenburg, A.

K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.

Oldenburg, A. L.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

Osten, W.

Pascal, J. C.

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

Pascal, J.-C.

Pedersen, H. M.

H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
[CrossRef]

Pedrini, G.

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analysis of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
[CrossRef]

G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
[CrossRef]

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995).
[CrossRef]

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
[CrossRef]

Perez-Amor, M.

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Pérez-Amor, M.

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

Pérez-López, C.

Picart, P.

Pinard, F.

F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
[CrossRef]

Piquet, F.

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
[CrossRef]

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Tracking high amplitude auto-oscillations with digital Fresnel holograms,” Opt. Express 15, 8263–8274 (2007).
[CrossRef]

Powell, R. L.

K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965).
[CrossRef]

R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965).
[CrossRef]

Predko, K. G.

S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989).
[CrossRef]

Pryputniewicz, R. J.

G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998).
[CrossRef]

Rosvold, G. O.

Salas-Araiza, M. D.

Samson, B.

Sanders, W.

K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.

Sanders, W. W.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

Schedin, S.

G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
[CrossRef]

Schnars, U.

Shajenko, P.

P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).

Singh, K.

Singh, V. R.

Smigielski, P.

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

Spicer, P.

B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968).
[CrossRef]

Stetson, K. A.

R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965).
[CrossRef]

K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965).
[CrossRef]

Tiziani, H.

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Tiziani, H. J.

G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
[CrossRef]

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
[CrossRef]

G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995).
[CrossRef]

Tonin, R.

R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977).
[CrossRef]

Tonndorf, J.

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972).
[CrossRef]

Trillo, C.

C. Trillo, A. F. Doval, F. Mendoza-Santoyo, C. Pérez-López, M. de la Torre-Ibarra, and J. L. Deán, “Multimode vibration analysis with high-speed TV holography and a spatiotemporal 3D Fourier transform method,” Opt. Express 17, 18014–18025 (2009).
[CrossRef]

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Vach, H.

F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
[CrossRef]

Valera, J. D. R.

D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Verpillat, F.

Vikhagen, E.

E. Vikhagen, “Vibration measurement using phase-shifting TV-holography and digital image-processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

Vikram, C. S.

C. S. Vikram, “Frequency-shifting for numerical analysis in time-average holography of vibrations,” Optik 93, 155–156 (1993).

Vukicevic, D.

Watrasie, B. M.

B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968).
[CrossRef]

Ziolkowski, E.

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

Zou, Y.

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Zou, Y. L.

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
[CrossRef]

Appl. Opt.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

P. C. Gupta and K. Singh, “Characteristic fringe function for time-average holography of periodic non sinusoidal vibrations,” Appl. Opt. 14, 129–133 (1975).

C. Jonathan and B. M. Khorana, “Contrast of the vibration fringes in time-averaged electronic speckle-pattern interferometry: effect of speckle averaging,” Appl. Opt. 31, 1863–1870 (1992).
[CrossRef]

P. Picart, J. Leval, D. Mounier, and S. Gougeon, “Some opportunities for vibration analysis with time-averaging in digital Fresnel holography,” Appl. Opt. 44, 337–343 (2005).
[CrossRef]

A. Asundi and V. R. Singh, “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006).
[CrossRef]

U. P. Kumar, Y. Kalyani, and K. N. Mohan, “Time-average TV holography for vibration fringe analysis,” Appl. Opt. 48, 3094–3101 (2009).
[CrossRef]

U. P. Kumar, K. N. Mohan, and M. P. Kothiyal, “Time average vibration fringe analysis using Hilbert transformation,” Appl. Opt. 49, 5777–5786 (2010).
[CrossRef]

J. Leval, P. Picart, J.-P. Boileau, and J.-C. Pascal, “Full field vibrometry with digital Fresnel holography,” Appl. Opt. 44, 5763–5771 (2005).
[CrossRef]

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, “Transient deformation measurement with electronic speckle pattern interferometry and a high-speed camera,” Appl. Opt. 38, 1159–1162 (1999).
[CrossRef]

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analysis of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
[CrossRef]

G. O. Rosvold and O. J. Lokberg, “Effect and use of exposure control in vibration analysis using TV holography,” Appl. Opt. 32, 684–691 (1993).
[CrossRef]

Exp. Mech.

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

C. R. Hazell and S. D. Liem, “Vibration analysis of plates by real-time stroboscopic holography,” Exp. Mech. 13, 339–344 (1973).
[CrossRef]

Int. J. Precis. Eng. Man.

K.-S. Kim, H.-S. Chang, and N. Akhter, “Determination of Poisson’s ratio of a beam by time-average ESPI and Euler-Bernoulli equation,” Int. J. Precis. Eng. Man. 11, 979–982 (2010).
[CrossRef]

J. Acoust. Soc. Am.

F. Pinard, B. Laine, and H. Vach, “Musical quality assessment of clarinets reeds using optical holography,” J. Acoust. Soc. Am. 113, 1736–1742 (2003).
[CrossRef]

S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” J. Acoust. Soc. Am. 51, 1904–1920 (1972).
[CrossRef]

J. Audio Eng. Soc.

J. Hladky, “Application of holography in analysis of vibrations of loudspeaker diaphragms,” J. Audio Eng. Soc. 22, 247–250 (1974).

J. Biomed. Opt.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16, 116005(2011).
[CrossRef]

J. Mod. Opt.

G. Pedrini, Y. L. Zou, and H. J. Tiziani, “Digital double pulse holographic interferometry for vibration analysis,” J. Mod. Opt. 42, 367–374 (1995).
[CrossRef]

J. Neurosurg.

H. E. Hoyer and J. Dorheide, “A study of human head vibrations using time-averaged holography,” J. Neurosurg. 58, 729–733 (1983).
[CrossRef]

J. Opt. Soc. Am. A

P. Shajenko and P. Cable, “Vibration mode discrimination using pulsed holography,” J. Opt. Soc. Am. A 56, S9-S9 (1974).

R. L. Powell and K. A. Stetson, “Interferometric analysis by wavefront reconstruction,” J. Opt. Soc. Am. A 55, 1593–1598(1965).
[CrossRef]

K. A. Stetson and R. L. Powell, “Interferometric hologram evaluation and real-time vibration analysis of diffuse objects,” J. Opt. Soc. Am. A 55, 1694–1695 (1965).
[CrossRef]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744–1761 (2008).
[CrossRef]

J. Phys. E

S. Johansson and K. G. Predko, “Performance of a phase-shifting speckle interferometer for measuring deformation and vibration,” J. Phys. E 22, 289–292 (1989).
[CrossRef]

O. J. Lokberg and K. Hogmoen, “Use of modulated reference wave in electronic speckle pattern interferometry,” J. Phys. E 9, 847–851 (1976).
[CrossRef]

J. Sound Vib.

R. Tonin and C. D. A. Bies, “Time-averaged holography for study of 3-dimensional vibrations,” J. Sound Vib. 52, 315–323 (1977).
[CrossRef]

Meas.

G. Pedrini and H. J. Tiziani, “Digital double pulse holographic interferometry using Fresnel and image plane holograms,” Meas. 15, 251–260 (1995).
[CrossRef]

Meas. Sci. Technol.

D. J. Anderson, J. D. R. Valera, and J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

C. Trillo, A. F. Doval, D. Cernadas, O. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Pérez-Amor, “Measurement of the complex amplitude of transient surface acoustic waves using double-pulsed TV holography and a two-stage spatial Fourier transform method,” Meas. Sci. Technol. 14, 2127–2134 (2003).
[CrossRef]

D. N. Borza, “Mechanical vibration measurement by high-resolution time-averaged digital holography,” Meas. Sci. Technol. 16, 1853–1864 (2005).
[CrossRef]

Nature

B. M. Watrasie and P. Spicer, “Vibration analysis by stroboscopic holography,” Nature 217, 1142–1143 (1968).
[CrossRef]

Opt. Commun.

E. Vikhagen, “Vibration measurement using phase-shifting TV-holography and digital image-processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

B. X. Lu, Z. G. Hu, H. Abendoth, H. Eggers, and E. Ziolkowski, “Improvement of time-average subtraction technique applied to vibration analysis with TV-holography,” Opt. Commun. 78, 217–221 (1990).
[CrossRef]

H. M. Pedersen, O. J. Lokberg, and B. M. Forre, “Vibration measurement using a TV speckle interferometer with silicon target vidicon,” Opt. Commun. 12, 421–426 (1974).
[CrossRef]

A. R. Ganesan, K. D. Hinsch, and P. Meinlschmidt, “Transition between rationally and irrationally related vibration modes in time-average holography,” Opt. Commun. 174, 347–353 (2000).
[CrossRef]

Opt. Eng.

G. C. Brown and R. J. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged electro-optic holography,” Opt. Eng. 37, 1398–1405 (1998).
[CrossRef]

N. Demoli and I. Demoli, “Measuring surface vibrations of musical instruments using an inexpensive digital holography device,” Opt. Eng. 44, 090502 (2005).
[CrossRef]

J. E. Greivenkamp, “Generalized data reduction for heterodyne interferometry,” Opt. Eng. 23, 350–352 (1984).

Opt. Express

Opt. Laser Technol.

G. Pedrini, P. Froening, H. Fessler, and H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1998).
[CrossRef]

Opt. Lasers Eng.

G. Pedrini, H. Tiziani, and Y. Zou, “Digital double pulse-TV holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

J. C. Pascal, X. Carniel, V. Chalvidan, and P. Smigielski, “Determination of phase and magnitude of vibration for energy flow measurements in a plate using holographic interferometry,” Opt. Lasers Eng. 25, 343–360 (1996).
[CrossRef]

J. P. Chambard, V. Chalvidan, X. Carniel, and J. C. Pascal, “Pulsed TV-holography recording for vibration analysis applications,” Opt. Lasers Eng. 38, 131–143 (2002).
[CrossRef]

G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects,” Opt. Lasers Eng. 38, 117–129 (2002).
[CrossRef]

D. N. Borza, “Full-field vibration amplitude recovery from high-resolution time-averaged speckle interferograms and digital holograms by regional inverting of the Bessel function,” Opt. Lasers Eng. 44, 747–770 (2006).
[CrossRef]

D. N. Borza, “High-resolution time average electronic holography for vibration measurement,” Opt. Lasers Eng. 41, 515–527 (2004).
[CrossRef]

Opt. Lett.

Optik

C. S. Vikram, “Frequency-shifting for numerical analysis in time-average holography of vibrations,” Optik 93, 155–156 (1993).

Phys. Norv.

O. J. Lokberg, “Vibration analysis by holography,” Phys. Norv. 4, 257–264 (1970).

Proc. SPIE

T. Kreis, M. Adams, and W. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Rep. Prog. Phys.

P. A. Fryer, “Vibration analysis by holography,” Rep. Prog. Phys. 33, 489–532 (1970).
[CrossRef]

Strain

P. Picart, J. Leval, F. Piquet, J.-P. Boileau, T. Guimezanes, and J.-P. Dalmont, “Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography,” Strain 46, 89–100 (2010).
[CrossRef]

Other

T. Kreis, Holographic Interferometry: Principles and Methods, Vol. 1 of Akademie Verlag Series in Optical Metrology(Akademie Verlag Gmbh, 1996).

K. Mohan, W. Sanders, and A. Oldenburg, “Elastic depth profiling of soft tissue by holographic imaging of surface acoustic waves,” presented at Digital Holography and Three-Dimensional Imaging (DH) 2012, 28 April–2 May 2012, Miami, FL, paper DSu4C.5.

P. Criton, “Expériences d’écoute par le toucher,” http://www.cnrs.fr/insis/recherche/docs-evenements/ecouter-autrement.pdf .

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Education, 1996).

A. F. Doval, C. Trillo, D. Cernadas, B. V. Dorrio, C. Lopez, J. L. Fernandez, and M. Perez-Amor, “Measuring amplitude and phase of vibration with double exposure stroboscopic TV holography,” in Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J. M. Fournier, eds. (Springer, 2000), pp. 281–288.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

User with bone-conduction device in anechoic room at LAUM.

Fig. 2.
Fig. 2.

Module of S versus Δ φ m and φ 0 for α = 1 / 6 .

Fig. 3.
Fig. 3.

Experimental setup and human face illuminated by the laser. HWP, half-wave plate; PBS, polarizing beam splitter; CMOS, CMOS sensor.

Fig. 4.
Fig. 4.

Reconstructed zone with α = 1 / 4 .

Fig. 5.
Fig. 5.

Representative sequence of 30 successive images with α = 1 / 4 (time between images is 833 ms).

Fig. 6.
Fig. 6.

Physical amplitude of the vibration over a period of 3.3 ms for α = 1 / 4 .

Fig. 7.
Fig. 7.

Representative sequence of 30 successive images with α = 1 / 6 (time between images is 833 ms).

Fig. 8.
Fig. 8.

Physical amplitude of the vibration over a period for α = 1 / 6 .

Fig. 9.
Fig. 9.

Representative sequence of 30 successive images with α = 1 / 12 (time between images is 833 ms).

Fig. 10.
Fig. 10.

Physical amplitude of the vibration over a period for α = 1 / 12 .

Fig. 11.
Fig. 11.

Measured sound velocity versus frequency.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A ( X , Y ) = A 0 ( X , Y ) exp [ i ψ 0 ( X , Y ) ] .
O ( x , y , d 0 ) = i exp ( 2 i π d 0 / λ ) λ d 0 exp ( i π λ d 0 ( x 2 + y 2 ) ) × A ( X , Y ) exp ( i π λ d 0 ( X 2 + Y 2 ) ) exp ( 2 i π λ d 0 ( x X + y Y ) ) d X d Y .
R ( X , Y ) = a r exp ( 2 i π ( u 0 X + v 0 Y ) ) ,
H = | O | 2 + | R | 2 + O R * + O * R .
A r ( n Δ η , m Δ ξ ) = k = 0 k = K 1 l = 0 l = L 1 H ( l p x , k p y ) exp [ i π λ d 0 ( l 2 p x 2 + k 2 p y 2 ) ] exp [ 2 i π ( l n L + k m K ) ] ,
u z = λ 2 π 1 1 + cos θ Δ φ m .
A r ( x , y ) = T A 0 ( x , y ) exp ( i ψ 0 ( x , y ) ) × exp ( i Δ φ m ( x , y ) sin ( ω 0 t 1 + φ 0 ( x , y ) + π α ) ) .
A r ( x , y ) = A 0 ( x , y ) exp ( i ψ 0 ( x , y ) ) × T k J k [ Δ φ m ( x , y ) ] sinc ( k α π ) × exp [ i k ( ω 0 t 1 + φ 0 ( x , y ) + π α ) ] ,
A r ( x , y ) = T A 0 ( x , y ) exp ( i ψ 0 ( x , y ) ) J 0 ( Δ φ m ( x , y ) ) ,
S = k J k [ Δ φ m ( x , y ) ] sinc ( k α π ) exp [ i k ( ω 0 t 1 + φ 0 ( x , y ) + π α ) ] .
Δ ψ n = ψ n + 1 ψ n = 2 Δ φ m sin ( α π ) cos ( φ 0 + 2 n α π ) .
Δ φ m = 1 2 sin ( α π ) ( 2 N n = 1 N Δ ψ n cos ( 2 n α π ) ) 2 + ( 2 N n = 1 N Δ ψ n sin ( 2 n α π ) ) 2 ,
φ 0 = arctan [ n = 1 N Δ ψ n sin ( 2 n α π ) n = 1 N Δ ψ n cos ( 2 n α π ) ] .
Δ φ m = 1 2 Δ ψ 1 2 + Δ ψ 2 2 .
Δ φ m = 1 2 1 3 ( Δ ψ 1 + Δ ψ 2 ) 2 1 4 ( Δ ψ 2 Δ ψ 1 ) 2 .
Δ φ m = 1 2 sin ( π / 12 ) ( 3 Δ ψ 2 Δ ψ 1 ) 2 + ( Δ ψ 2 3 Δ ψ 1 ) 2 .

Metrics