Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fluorescence molecular tomography using a two-step three-dimensional shape-based reconstruction with graphics processing unit acceleration

Not Accessible

Your library or personal account may give you access

Abstract

In fluorescence molecular tomography, the accurate and stable reconstruction of fluorescence-labeled targets remains a challenge for wide application of this imaging modality. Here we propose a two-step three-dimensional shape-based reconstruction method using graphics processing unit (GPU) acceleration. In this method, the fluorophore distribution is assumed as the sum of ellipsoids with piecewise-constant fluorescence intensities. The inverse problem is formulated as a constrained nonlinear least-squares problem with respect to shape parameters, leading to much less ill-posedness as the number of unknowns is greatly reduced. Considering that various shape parameters contribute differently to the boundary measurements, we use a two-step optimization algorithm to handle them in a distinctive way and also stabilize the reconstruction. Additionally, the GPU acceleration is employed for finite-element-method-based calculation of the objective function value and the Jacobian matrix, which reduces the total optimization time from around 10 min to less than 1 min. The numerical simulations show that our method can accurately reconstruct multiple targets of various shapes while the conventional voxel-based reconstruction cannot separate the nearby targets. Moreover, the two-step optimization can tolerate different initial values in the existence of noises, even when the number of targets is not known a priori. A physical phantom experiment further demonstrates the method’s potential in practical applications.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method

Kuan Peng, Ling He, Ziqiang Zhu, Jingtian Tang, and Jiaying Xiao
Appl. Opt. 52(34) 8270-8279 (2013)

Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction

Xu Cao, Xin Wang, Bin Zhang, Fei Liu, Jianwen Luo, and Jing Bai
Biomed. Opt. Express 4(1) 1-14 (2013)

Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography

Huangjian Yi, Duofang Chen, Xiaochao Qu, Kuan Peng, Xueli Chen, Yuanyuan Zhou, Jie Tian, and Jimin Liang
Appl. Opt. 51(7) 975-986 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved