Abstract

Extensive efforts have been made to integrate diffuse optical tomography (DOT) with other imaging modalities, such as magnetic-resonance imaging and x-ray computerized tomography, for its performance improvement. However, the experimental apparatus is in general intricate and costly due to adoption of the physically distinct radiation regimes. In this study, a time-domain fluorescence-guided DOT methodology that incorporates a priori localization information provided by diffuse fluorescence tomography (DFT) is investigated in an attempt to optimize recovery of the optical property distributions. The methodology is based on a specifically designed multichannel time-correlated single-photon-counting DOT/DFT system as well as a featured-data image reconstruction scheme that is developed within the framework of the generalized pulse spectrum technique and employs the third-order simplified harmonics approximation to the radiative transfer equation as the forward model. We have validated the methodology using phantom experiments and demonstrated that, with the guidance of fluorescence a priori, the quantitativeness and spatial resolution of the recovered optical target can be considerably improved in terms of the absorption and scattering images.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
    [CrossRef]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [CrossRef]
  3. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
    [CrossRef]
  4. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
    [CrossRef]
  5. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
    [CrossRef]
  6. Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
    [CrossRef]
  7. J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007).
    [CrossRef]
  8. H.-J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005).
    [CrossRef]
  9. F. Gao, H.-J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
    [CrossRef]
  10. H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007).
    [CrossRef]
  11. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
    [CrossRef]
  12. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
    [CrossRef]
  13. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpener, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
    [CrossRef]
  14. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
    [CrossRef]
  15. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
    [CrossRef]
  16. F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
    [CrossRef]
  17. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
    [CrossRef]
  18. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
    [CrossRef]
  19. S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
    [CrossRef]
  20. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
    [CrossRef]
  21. A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011).
    [CrossRef]
  22. Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
    [CrossRef]
  23. Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
    [CrossRef]
  24. F. Gao, J. Li, L.-M. Zhang, P. Poulet, H.-J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of a small-animal-stimulating phantom,” Appl. Opt. 49, 3163–3172 (2010).
    [CrossRef]
  25. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
    [CrossRef]
  26. F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
    [CrossRef]
  27. F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).
  28. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
    [CrossRef]
  29. Y.-T. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
    [CrossRef]
  30. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).
  31. F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3125 (2010).
    [CrossRef]
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).
  33. J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000).
    [CrossRef]
  34. C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
    [CrossRef]
  35. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
    [CrossRef]
  37. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
    [CrossRef]
  38. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbations for diffuse optical tomography,” Appl. Opt. 42, 3129–3144(2003).
    [CrossRef]
  39. A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
    [CrossRef]
  40. D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
    [CrossRef]

2011

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
[CrossRef]

A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011).
[CrossRef]

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
[CrossRef]

2010

Y.-T. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010).
[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3125 (2010).
[CrossRef]

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

F. Gao, J. Li, L.-M. Zhang, P. Poulet, H.-J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of a small-animal-stimulating phantom,” Appl. Opt. 49, 3163–3172 (2010).
[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

2009

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

2008

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

2007

H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpener, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007).
[CrossRef]

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

2006

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
[CrossRef]

2005

H.-J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

2003

2002

F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

F. Gao, H.-J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef]

2000

J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

1997

Achilefu, S.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Akers, W.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Aster, R. C.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Austin, T.

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007).
[CrossRef]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

Barbaro, A.

Barber, W. C.

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

Berger, M.

Boas, D.

Böcker, D.

Borchers, B.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

Brendel, B.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Bruulsema, J. T.

Busch, D. R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Carpener, C. M.

Chance, B.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Corlu, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Culver, J. P.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Czerniecki, B. J.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

Dehgani, H.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Dehghani, H.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpener, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

DeMichele, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Deply, D.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Dorn, O.

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Elias, S.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Eric, S.

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

Essenpreis, M.

Farrell, T. J.

Faugeras, O.

J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000).
[CrossRef]

Fels, L.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Fox, M.-D.

C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
[CrossRef]

Fraker, D. L.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Gao, F.

F. Gao, J. Li, L.-M. Zhang, P. Poulet, H.-J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of a small-animal-stimulating phantom,” Appl. Opt. 49, 3163–3172 (2010).
[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3125 (2010).
[CrossRef]

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007).
[CrossRef]

F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
[CrossRef]

H.-J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005).
[CrossRef]

F. Gao, H.-J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).
[CrossRef]

F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).

Gibson, A.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

Gomes, J.

J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

Gore, J. C.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
[CrossRef]

Gui, C.-F.

C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
[CrossRef]

Gulsen, G.

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

Hayward, J. E.

Hebden, J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Hebden, J. C.

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Heinemann, L.

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Homma, K.

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Iwanczyk, J. S.

Jiang, H. B.

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

Jiang, H.-B.

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

Jiang, S.

Kilmer, M. E.

Klose, A. D.

A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011).
[CrossRef]

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Kolehmainen, V.

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

Konecky, S. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Koschinsky, T.

Larsen, E. W.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

Lee, K.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Li, C.-M.

C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
[CrossRef]

Li, J.

Lin, Y.-T.

Lu, Y.-J.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Luijten, P.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Mali, W.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Miller, E. L.

Nachabe, R.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Nakker, L.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Nalcioglu, O.

Nielsen, T.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Nolting, D. D.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
[CrossRef]

Nothdurft, R. E.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Orskov, H.

Pathak, S.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Patterson, M. S.

Patwardhan, S. V.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Paulsen, K. D.

Pham, W.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
[CrossRef]

Pöchinger, T.

A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011).
[CrossRef]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpener, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007).
[CrossRef]

Poulet, P.

Putt, M. E.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Qin, D.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Rasmussen, J. C.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Ripoll, J.

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
[CrossRef]

Roeck, W.

Rosen, M. A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Ruan, P.-Q.

Rudin, M.

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
[CrossRef]

Sandahl-Christiansen, J.

Schmelzeisen-Redeker, G.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Schnall, M. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

Schweiger, M.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Sevick-Muraca, E. M.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Shen, H.-O.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Sikora, J.

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

Sobel, E.

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

Stuker, F.

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
[CrossRef]

Tanikawa, Y.

H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007).
[CrossRef]

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006).
[CrossRef]

H.-J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005).
[CrossRef]

Tchou, J.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Thurber, C. H.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).

Tianikawa, Y.

F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

van Beek, M.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

van de Mark, M.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

van de Ven, S.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

van der Voort, M.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Wang, G.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Weissleder, R.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

Wiethoff, A. J.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

Xu, C.-Y.

C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
[CrossRef]

Yalavarthy, P. K.

Yamada, Y.

Yang, F.

Yang, G.-Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

Ye, Y.-P.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Yodh, A.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

Yuan, Z.

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

Zacharopoulos, A. Z.

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

Zhang, L.-M.

Zhang, Q. Z.

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

Zhang, Q.-Z.

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

Zhao, H.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Zhao, H.-J.

Zhen, Y.

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

Zhu, B.-H.

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

Appl. Opt.

Breast Cancer Res. Treat.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008).
[CrossRef]

Curr. Org. Synth.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011).
[CrossRef]

Eur. Radiol.

J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007).
[CrossRef]

IEICI Trans. Inf. Sys.

F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).

Inverse Probl.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).
[CrossRef]

A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006).
[CrossRef]

J. Biomed. Opt.

H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef]

Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007).
[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).
[CrossRef]

Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009).
[CrossRef]

J. Comput. Phys.

A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).
[CrossRef]

J. Photochem. Photobiol. B Biol.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010).
[CrossRef]

J. Vis. Commun. Image Represent.

J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000).
[CrossRef]

Mol. Imaging Biol.

S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010).
[CrossRef]

Nat. Med.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Pharmaceutics

F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011).
[CrossRef]

Phil. Trans. R. Soc. A

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).
[CrossRef]

Phys. Med. Biol.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002).
[CrossRef]

Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010).
[CrossRef]

A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011).
[CrossRef]

Proc. SPIE

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Rep. Prog. Phys.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

Rev. Sci. Instrum.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000).
[CrossRef]

Other

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).

C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436.
[CrossRef]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simplified workflow depicting the full procedure for carrying out time-domain DFT-guided DOT.

Fig. 2.
Fig. 2.

Schematic of the used PMT-TCSPC-based DOT/DFT system.

Fig. 3.
Fig. 3.

Sketch of the phantom used in the experiments. (a) Geometry sketch and (b) photograph of the optodes in 2D configuration.

Fig. 4.
Fig. 4.

Normalized temporal profiles measured at both the excitation and emission wavelengths, along the 16 detection channels for the first source illumination.

Fig. 5.
Fig. 5.

(a) Fluorescent yield and lifetime images reconstructed from the simulated data for the experimental scenario by the SP3-based DFT algorithm, where the circles indicate the presumed location and size of the target. (b) ROI obtained from the yield image with the improved level-set method.

Fig. 6.
Fig. 6.

The absorption- and scattering-images reconstructed from the SP7-model-based simulated data by the SP3-based DOT algorithm with (a) no priori, (b) the “hard-prior” strategy, and (c) the “soft-prior” strategy, where the circles indicate the presumed location and size of the target. (d) X-profiles in the reconstructed images together with the original ones.

Fig. 7.
Fig. 7.

(a) Fluorescent yield- and lifetime images reconstructed from the experimentally measured data by the SP3-based DFT algorithm, where the circles indicate the original location and size of the target. (b) ROI obtained from the yield image with the improved level-set method.

Fig. 8.
Fig. 8.

Absorption- and scattering-images reconstructed from the measured data by the SP3-based DOT algorithm with (a) no priori, (b) the “hard-prior” strategy, and (c) the “soft-prior” strategy, where the circles indicate the presumed location and size of the target. (d) X-profiles in the reconstructed and the original images.

Fig. 9.
Fig. 9.

The absorption- and scattering-images reconstructed from the measured data by using the DA-based DOT with (a) no priori, (b) the “hard-prior” strategy, and (c) the “soft-prior” strategy, where the circles indicate the presumed location and size of the target. (d) X-profiles in the reconstructed and the original images.

Tables (2)

Tables Icon

Table 1. Optical, Fluorescent, and Geometrical Parameters of the Phantom

Tables Icon

Table 2. Evaluation Measures of the Simulations and Experiments

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

JDFT(ξd,ζs,p)=ΘJ^(m)(ξd,ζs,p)J^ref(x)(ξd,ζs,p),
JDOT(ξd,ζs,p)=J^task(x)(ξd,ζs,p)J^ref(x)(ξd,ζs,p).
{13μ1(r)φ1(v)(r,ζs,p)+μ0(r)φ1(v)(r,ζs,p)=Q(v)(r,ζs,p)+23μ0(r)φ2(v)(r,ζs,p)17μ3(r)φ2(v)(r,ζs,p)+[49μ0(r)+59μ2(r)]φ2(v)(r,ζs,p)=23Q(v)(r,ζs,p)+23μ0(r)φ1(v)(r,ζs,p)
{(12+A1)φ1(v)(r,ζs,p)+(1+B13μ1)nφ1(v)(r,ζs,p)=(18+C1)φ2(v)(r,ζs,p)+(D1μ3)nφ2(v)(r,ζs,p)(724+A2)φ2(v)(r,ζs,p)+(1+B27μ3)nφ2(v)(r,ζs,p)=(18+C2)φ1(v)(r,ζs,p)+(D2μ1)nφ1(v)(r,ζs,p),
Q(ν)(r,ζs,p)={δ(rζs)ν=xΦ(x)(r,ζs,p)f(r)ν=m
f(r,p)=ημaf(r)1+pτ(r),
{[φ1(ν)(r,ξs,p),φ2(ν)(r,ξs,p)]}=Q(v)(r,ζs,p).
{Φ(v)=φ1(v)23φ2(v)J(v)=(14+J0)(φ1(v)23φ2(v))0.5+J13μa1nφ1(v)+13φ2(v)(516+J2)J37μa3nφ2(v),
J(v)={φ1(v),φ2(v)}.
[φ1(m)(r,ζs,p),φ2(m)(r,ζs,p)]=Ω[Gφ1(m)(ξd,r,p),Gφ2(m)(ξd,r,p)]Φ(x)(r,ζs,p)f(r,p)dr.
{[φ1(m)(ξd,ζs,p),φ2(m)(ξd,ζs,p)]}=Ω{[Gφ1(m)(ξd,r,p),Gφ2(m)(ξd,r,p)]}Φ(x)(r,ζs,p)f(r,p)dr.
J(m)(ξd,ζs,p)=ΩGJ(m)(ξd,r,p)Φ(x)(r,ζs,p)f(r,p)dr,
JDFT(ξd,ζs,p)J(x)(ξd,ζs,p)=ΩGJ(m)(ξd,r,p)Φ(x)(r,ζs,p)f(r,p)dr.
J(x)(ξd,ζs,p,μa(k),μs(k))JDOT(ξd,ζs,p)J(x)(ξd,ζs,p,μa(0),μs(0))=ΩGJ(x)(ξd,r,p,μa(k),μsx(k))Φ(x)(r,ζs,p,μa(k),μs(k))o(k)(r,p)dr
o(k)(r,p)=δμa(k)(r)+μa(k)(r)+p/cμa(k)(r)δμs(k)(r),
J(p)=W(p)x(p),
{J(k)(p)=W(k)(p)Kx^(k)(p)x(k+1)(p)=x(k)(p)+Kx^(k)(p),
Ki,mj={1ifi=mj0otherwise
x(p)=argmin{J(k)(p)W(k)(p)x(p)22+αLx(k)(p)22},
Lij={0ifiandjare not in the same region1/Nrifijbut they are in the same region1ifi=j
[W(k)(p)αL]x(k)(p)=[J(k)(p)0].
L(r)t=μ{ΔL(r)·[L(r)L(r)]}+λδ[L(r)]·[11+|Gσ(r)*ημa(r)|2L(r)L(r)]+νgδε[L(r)],
L(k+1)(ri)=L(k)(ri)+τP[L(k)(r)]|ri,
L(0)(ri)={ρriΩ0Ω0riΩρriΩΩ0Ω,

Metrics