Abstract

A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  2. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360–369 (1977).
    [CrossRef]
  3. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck observatory adaptive optics system,” Appl. Opt. 43, 5458–5467 (2004).
    [CrossRef]
  4. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49, D17–D29 (2010).
    [CrossRef]
  5. J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  6. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Herbert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [CrossRef]
  7. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008).
    [CrossRef]
  8. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express 10, 419–428 (2002).
    [CrossRef]
  9. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [CrossRef]
  10. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006).
    [CrossRef]
  11. Q. Mu, Z. Cao, D. Li, and L. Xuan, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007).
    [CrossRef]
  12. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
    [CrossRef]
  13. M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012).
    [CrossRef]
  14. C. Liu and M. K. Kim, “Digital holographic adaptive optics for ocular imaging: proof of principle,” Opt. Lett. 36, 2710–2712 (2011).
    [CrossRef]
  15. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  17. C. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef]
  18. C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
    [CrossRef]
  19. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [CrossRef]
  20. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer Science+Business Media, 2011), pp. 55–93.
  21. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  22. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of lensless holographic imaging system,” Appl. Opt. 41, 4489–4496 (2002).
    [CrossRef]
  23. M. K. Kim, “Adaptive optics by incoherent digital holography,” Opt. Lett. 37, 2694–2696 (2012).
    [CrossRef]
  24. F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett. 37, 2190–2192 (2012).
    [CrossRef]
  25. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37, 3723–3725 (2012).
    [CrossRef]
  26. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  27. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [CrossRef]

2012 (4)

2011 (1)

2010 (2)

M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49, D17–D29 (2010).
[CrossRef]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

2009 (2)

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
[CrossRef]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[CrossRef]

2008 (1)

K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

2004 (1)

2002 (4)

1999 (2)

1997 (1)

1994 (1)

1977 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Bierden, P.

Booth, M. J.

M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012).
[CrossRef]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[CrossRef]

Campbell, M. C. W.

Cao, Z.

Chamot, S. R.

Chen, L.

Cuche, E.

Dainty, C.

Debarre, D.

M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012).
[CrossRef]

Depeursinge, C.

Doble, N.

Donnelly, W. J.

Dubois, F.

Esposito, S.

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Hampson, K. M.

K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008).
[CrossRef]

Hardy, J. W.

Hart, M.

Herbert, T. J.

Iglesias, I.

Jesacher, A.

M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012).
[CrossRef]

Joannes, L.

Julien, Y.

Jüptner, W.

Kelner, R.

Kim, M. K.

Koliopoulos, C. L.

Kühn, J.

Le Mignant, D.

Lefebvre, J. E.

Legros, J. C.

Li, D.

Liang, J.

Liu, C.

C. Liu and M. K. Kim, “Digital holographic adaptive optics for ocular imaging: proof of principle,” Opt. Lett. 36, 2710–2712 (2011).
[CrossRef]

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
[CrossRef]

Lo, C.

Macintosh, B. A.

Mann, C.

Marquet, P.

Miller, D.

Mu, Q.

Olivier, S.

Pavillon, N.

Pedrini, G.

Queener, H.

Ragazzoni, R.

Romero-Borja, F.

Roorda, A.

Rosen, J.

Schnars, U.

Seelamantula, C. S.

Singer, B.

Tiziani, H. J.

Unser, M.

van Dam, M. A.

Wang, D.

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
[CrossRef]

Williams, D. R.

Xuan, L.

Yoon, G.

Yourassowsky, C.

Yu, L.

Zhang, Y.

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
[CrossRef]

Appl. Opt. (6)

J. Mod. Opt. (1)

K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55, 3425–3467 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

C. Liu, D. Wang, and Y. Zhang, “Comparison and verification of numerical reconstruction methods in digital holography,” Opt. Eng. 48, 1058021 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Opt. Photon. News (1)

M. J. Booth, D. Debarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photon. News 23(1), 22–29 (2012).
[CrossRef]

Philos. Trans. R. Soc. A (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. A 365, 2829–2843 (2007).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

Other (2)

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences (Springer Science+Business Media, 2011), pp. 55–93.

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the Fourier digital holographic adaptive optics imaging system. R, retina; E, eye lens of focal length 25 mm; A, aberrator; L1, 75 mm in focal length; L2, 200 mm; BS1–4, beamsplitters.

Fig. 2.
Fig. 2.

Simulations. (a), (b) Simulated amplitude and phase. The phase map is represented by a blue-white-red colormap that corresponds to [π,π]. (c) Image without aberrator in place. (d) Simulated phase aberration. (e) Distorted image. (f) Phase map of distorted field at the eye pupil. (g) Measured phase aberration at the eye pupil. (h) Phase map of the corrected field at pupil. (i) Corrected image. Scale bar: 100 μm.

Fig. 3.
Fig. 3.

Experimental results on USAF 1951 resolution target. (a) Undistorted full-field hologram. (b) Angular spectrum of (a), displayed in logarithmic scale. (c) Phase map of part of (a) filtered by the highlighted elliptical area. (d) Reconstructed baseline image. (e) Distorted full-field hologram. (f) Angular spectrum of (e). (g) Distorted phase map. (f) Distorted image. (i) Guide-star hologram. (j) Angular spectrum of part of (i) represented by the dashed circle. (k) Measured phase aberrations. (l) Corrected image. Scale bar: 100 μm.

Fig. 4.
Fig. 4.

Corrected images with varying spatial spectral filters. (a)–(c) Measured phase aberrations with filter diameters 28.4, 7.4, and 0.74linepairs/mm, respectively. (d)–(f) Corrected images by the phase measurements in upper panel. Scale bar: 100 μm.

Fig. 5.
Fig. 5.

FTDHAO on onion tissue. (a) Baseline image, (b) distorted image, (c) measured aberration, and (d) corrected image. Scale bar: 100 μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O(x2,y2)=1jλf2P(x1,y1)exp[j2π1λf2(x2x1+y2y1)]dx1dy1,
O(fx,fy)=FT{P(x1,y1)}(fx,fy),
fx=x2λf2fy=y2λf2.
P(x1,y1)=IFT{O(fx,fy)}(x1,y1).
Oc(x2,y2)=FT{P(x1,y1)exp(jϕ(x1,y1))}(fx,fy).
Δfx=Δx2λf2Δfy=Δy2λf2.
Δx1=λf2MΔx2Δy1=λf2NΔx2.
D2λf24Δx2.

Metrics