Abstract

The influence of the elastic modulus of a tumor (EMT) on the laser-generated thermoelastic force source and ultrasound waves are investigated by using the finite element method. Taking into account the effects of thermal diffusion, optical penetration, and finite duration of laser pulse, the transient temperature distribution is obtained. Applying this temperature field to structure analyses as thermal loading, the thermoelastic stress field and laser-induced ultrasound wave in soft tissues are obtained. The results show that there is a linear correlation between the maximum compressive stress and the elastic modulus of tissues. It is also shown that the features and frequency regions of the laser-induced ultrasound waveform have a close relationship with the EMT, which has been further verified by a corresponding experiment.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical micro-scale mapping of dynamic biomechanical tissue properties

Xing Liang, Amy L. Oldenburg, Vasilica Crecea, Eric J. Chaney, and Stephen A. Boppart
Opt. Express 16(15) 11052-11065 (2008)

Effect of oblique force source induced by laser ablation on ultrasonic generation

Yuning Guo, Dexing Yang, Ying Chang, and Wei Gao
Opt. Express 22(1) 166-176 (2014)

Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique

Kaihua Sun, Ling Yuan, Zhonghua Shen, Qingping Zhu, Jian Lu, and Xiaowu Ni
Appl. Opt. 52(28) 6896-6905 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription