Abstract

A method for obtaining the intensity fluctuation spectra of dynamic laser speckle patterns is introduced, which is based on the temporal modulation of the illumination and the subsequent integration of the intensity signals. This approach does not rely on the fast sampling rate to meet the Nyquist criterion, making it applicable for full-field imaging applications. The intensity fluctuation spectra created by the in-plane motion of a random phase object was investigated by using both a single-channel detector and a multichannel sensor. The power spectra obtained by using the full-field temporal modulation method were found to agree with the homodyne Doppler spectra obtained by using the method of autocorrelation and Fourier transform.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser speckle imaging based on intensity fluctuation modulation

Yaguang Zeng, Mingyi Wang, Guangping Feng, Xianjun Liang, and Guojian Yang
Opt. Lett. 38(8) 1313-1315 (2013)

Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns

Alejandro Federico and Guillermo H. Kaufmann
Appl. Opt. 46(11) 1979-1985 (2007)

Relation between the contrast in time integrated dynamic speckle patterns and the power spectral density of their temporal intensity fluctuations

Matthijs J. Draijer, Erwin Hondebrink, Marcus Larsson, Ton G. van Leeuwen, and Wiendelt Steenbergen
Opt. Express 18(21) 21883-21891 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription