Abstract

Optical correlation has traditionally processed monochromatic gray-scale images. This paper develops a new encoding mechanism that uses the chromaticity of the input signal. It is then not only possible to detect different colored objects, but the system is also invariant to changes in the brightness of the lighting, including variations across the object.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Millán, M. J. Yzuel, J. Campos, and C. Ferreira, “Different strategies in optical recognition of polychromatic images,” Appl. Opt. 31, 2560–2567 (1992).
    [CrossRef]
  2. F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
    [CrossRef]
  3. M. Hsieh, K. Hsu, and H. Zhai, “Color image recognition by use of a joint transform correlator of three liquid-crystal televisions,” Appl. Opt. 41, 1500–1504 (2002).
    [CrossRef]
  4. S. Sangwine, “Hypercomplex Fourier transforms of color images,” in IEEE International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 137–140.
  5. B. Reddy and T. Prasad, “Color image registration and template matching using quaternion phase correlation,” UbiCC J. 6, 714–721 (2011).
  6. T. Ell and S. Sangwine, “Hypercomplex Wiener-Khintchine theorem with application to color image correlation,” in IEEE International Conference on Image Processing (IEEE, 2000), Vol. 2, pp. 792–795.
  7. W. Feng, B. Hu, and C. Yang, “A quaternion phase-only correlation algorithm for color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 461–464.
  8. C. Xie, M. Savvides, and B. Vijayakumar, “Quaternion correlation filters for face recognition in wavelet domain,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) (IEEE, 2005), Vol. 2, pp. 85–88.
  9. L. Jamal-Aldin, R. Young, and C. Chatwin, “Application of nonlinearity to wavelet-transformed images to improve correlation filter performance,” Appl. Opt. 36, 9212–9224 (1997).
    [CrossRef]
  10. P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
    [CrossRef]
  11. H. Arsenault and Y. Sheng, “Properties of the circular harmonic expansion for rotation invariant pattern recognition,” Appl. Opt. 25, 3225–3229 (1986).
    [CrossRef]
  12. B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
    [CrossRef]
  13. B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
    [CrossRef]
  14. V. R. Riasati and M. A. G. Abushagur, “Projection-slice synthetic discriminant functions for optical pattern recognition,” Appl. Opt. 36, 3022–3034 (1997).
    [CrossRef]
  15. S. Goyal, N. K. Nischal, V. K. Beri, and A. K. Gupta, “Wavelet modified maximum average correlation height filter for rotation invariance that uses chirp encoding in a hybrid digital optical correlator,” Appl. Opt. 45, 4850–4857(2006).
    [CrossRef]
  16. P. Bone, R. Young, and C. Chatwin, “Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes,” Opt. Eng. 45, 077203 (2006).
    [CrossRef]
  17. P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
    [CrossRef]
  18. R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14S1, 351–356 (1975).
  19. L. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35, 4567–4576(1996).
    [CrossRef]
  20. S. Reichelt, R. Haussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37, 1955–1957 (2012).
    [CrossRef]

2012 (1)

2011 (1)

B. Reddy and T. Prasad, “Color image registration and template matching using quaternion phase correlation,” UbiCC J. 6, 714–721 (2011).

2010 (1)

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

2006 (2)

2002 (1)

2000 (2)

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
[CrossRef]

1997 (2)

1996 (1)

1992 (1)

1990 (1)

B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
[CrossRef]

1989 (1)

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

1986 (1)

1975 (1)

R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14S1, 351–356 (1975).

Abushagur, M. A. G.

Arsenault, H.

Bangalore, N. M.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

Beri, V. K.

Birch, P.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

Bone, P.

P. Bone, R. Young, and C. Chatwin, “Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes,” Opt. Eng. 45, 077203 (2006).
[CrossRef]

Budgett, D.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

Campos, J.

Chatwin, C.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

P. Bone, R. Young, and C. Chatwin, “Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes,” Opt. Eng. 45, 077203 (2006).
[CrossRef]

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

L. Jamal-Aldin, R. Young, and C. Chatwin, “Application of nonlinearity to wavelet-transformed images to improve correlation filter performance,” Appl. Opt. 36, 9212–9224 (1997).
[CrossRef]

Ell, T.

T. Ell and S. Sangwine, “Hypercomplex Wiener-Khintchine theorem with application to color image correlation,” in IEEE International Conference on Image Processing (IEEE, 2000), Vol. 2, pp. 792–795.

Farsari, M.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

Feng, W.

W. Feng, B. Hu, and C. Yang, “A quaternion phase-only correlation algorithm for color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 461–464.

Ferreira, C.

Fütterer, G.

Goyal, S.

Gregory, D.

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

Gupta, A. K.

Hassebrook, L.

B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
[CrossRef]

Haussler, R.

Hostetler, L.

B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
[CrossRef]

Hsieh, M.

Hsu, K.

Hu, B.

W. Feng, B. Hu, and C. Yang, “A quaternion phase-only correlation algorithm for color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 461–464.

Jamal-Aldin, L.

Jutamulia, S.

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

Kanbayashi, Y.

Kato, H.

Leister, N.

Mahalanobis, A.

B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
[CrossRef]

Millán, M. S.

Mitra, B.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

Neto, L.

Nischal, N. K.

Prasad, T.

B. Reddy and T. Prasad, “Color image registration and template matching using quaternion phase correlation,” UbiCC J. 6, 714–721 (2011).

Reddy, B.

B. Reddy and T. Prasad, “Color image registration and template matching using quaternion phase correlation,” UbiCC J. 6, 714–721 (2011).

Rehman, S.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

Reichelt, S.

Riasati, V. R.

Richardson, J.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

Roberge, D.

Sangwine, S.

S. Sangwine, “Hypercomplex Fourier transforms of color images,” in IEEE International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 137–140.

T. Ell and S. Sangwine, “Hypercomplex Wiener-Khintchine theorem with application to color image correlation,” in IEEE International Conference on Image Processing (IEEE, 2000), Vol. 2, pp. 792–795.

Savvides, M.

C. Xie, M. Savvides, and B. Vijayakumar, “Quaternion correlation filters for face recognition in wavelet domain,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) (IEEE, 2005), Vol. 2, pp. 85–88.

Sheng, Y.

Smartt, R. N.

R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14S1, 351–356 (1975).

Steel, W. H.

R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14S1, 351–356 (1975).

Takessian, A.

B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
[CrossRef]

Usukura, N.

Vijaya Kumar, B. V. K.

B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
[CrossRef]

B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
[CrossRef]

Vijayakumar, B.

C. Xie, M. Savvides, and B. Vijayakumar, “Quaternion correlation filters for face recognition in wavelet domain,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) (IEEE, 2005), Vol. 2, pp. 85–88.

Xie, C.

C. Xie, M. Savvides, and B. Vijayakumar, “Quaternion correlation filters for face recognition in wavelet domain,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) (IEEE, 2005), Vol. 2, pp. 85–88.

Yang, C.

W. Feng, B. Hu, and C. Yang, “A quaternion phase-only correlation algorithm for color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 461–464.

Yelamarty, R.

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

Young, R.

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

P. Bone, R. Young, and C. Chatwin, “Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes,” Opt. Eng. 45, 077203 (2006).
[CrossRef]

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

L. Jamal-Aldin, R. Young, and C. Chatwin, “Application of nonlinearity to wavelet-transformed images to improve correlation filter performance,” Appl. Opt. 36, 9212–9224 (1997).
[CrossRef]

Yu, F.

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

Yzuel, M. J.

Zhai, H.

Appl. Opt. (7)

IEEE Trans. Image Process. (1)

B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian, “Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response,” IEEE Trans. Image Process. 9, 1025–1034 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. N. Smartt and W. H. Steel, “Theory and application of point-diffraction interferometers,” Jpn. J. Appl. Phys. 14S1, 351–356 (1975).

Opt. Commun. (2)

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175, 347–352 (2000).
[CrossRef]

P. Birch, B. Mitra, N. M. Bangalore, S. Rehman, R. Young, and C. Chatwin, “Approximate bandpass and frequency response models of the difference of Gaussian filter,” Opt. Commun. 283, 4942–4948 (2010).
[CrossRef]

Opt. Eng. (2)

B. V. K. Vijaya Kumar, L. Hassebrook, and L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990).
[CrossRef]

P. Bone, R. Young, and C. Chatwin, “Position, rotation, scale and orientation invariant multiple object recognition from cluttered scenes,” Opt. Eng. 45, 077203 (2006).
[CrossRef]

Opt. Laser Technol. (1)

F. Yu, S. Jutamulia, R. Yelamarty, and D. Gregory, “Adaptive joint transform correlator for real-time colour pattern recognition,” Opt. Laser Technol. 21, 185–188 (1989).
[CrossRef]

Opt. Lett. (1)

UbiCC J. (1)

B. Reddy and T. Prasad, “Color image registration and template matching using quaternion phase correlation,” UbiCC J. 6, 714–721 (2011).

Other (4)

T. Ell and S. Sangwine, “Hypercomplex Wiener-Khintchine theorem with application to color image correlation,” in IEEE International Conference on Image Processing (IEEE, 2000), Vol. 2, pp. 792–795.

W. Feng, B. Hu, and C. Yang, “A quaternion phase-only correlation algorithm for color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 461–464.

C. Xie, M. Savvides, and B. Vijayakumar, “Quaternion correlation filters for face recognition in wavelet domain,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05) (IEEE, 2005), Vol. 2, pp. 85–88.

S. Sangwine, “Hypercomplex Fourier transforms of color images,” in IEEE International Conference on Image Processing (IEEE, 2001), Vol. 1, pp. 137–140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

(a) Chroma values displayed as colors. Note, since r+g+b=1, some values are not possible (indicated in black). (b) Lab color space with L=100.

Fig. 2.
Fig. 2.

Input image. The targets are the green horizontal tanks.

Fig. 3.
Fig. 3.

(a) Chroma encoded DOG filter result. (b) Lab encoded DOG filter result.

Fig. 4.
Fig. 4.

Input image with multiple targets. The top row of tanks have the same hue and saturation but vary in value. In the second and fourth rows, hue and value are constant but the saturation is decreased. In the third row, hue and value are changed, and in the fifth row hue alone is changed.

Fig. 5.
Fig. 5.

Absolute component of the correlation output for the chroma and Lab color encoding.

Fig. 6.
Fig. 6.

Real component of the correlation output for the chroma and Lab color encoding.

Fig. 7.
Fig. 7.

Imaginary component of the correlation output for the chroma and Lab color encoding.

Fig. 8.
Fig. 8.

Plot of the mean value versus COPA. The chroma encoded real COPA, solid line; chroma encoded imaginary COPA, dotted line; Lab encoded real COPA, dashed line; Lab encoded imaginary COPA, dot-dash line.

Fig. 9.
Fig. 9.

Plot of the mean saturation versus COPA. The chroma encoded real COPA, solid line; chroma encoded imaginary COPA, dotted line; Lab encoded real COPA, dashed line; Lab encoded imaginary COPA, dot-dash line.

Fig. 10.
Fig. 10.

Plot of the mean hue versus COPA. The chroma encoded real COPA, solid line; chroma encoded imaginary COPA, dotted line; Lab encoded real COPA, dashed line; Lab encoded imaginary COPA, dot-dash line.

Fig. 11.
Fig. 11.

An example input image showing the multicolored target and a single color target.

Fig. 12.
Fig. 12.

An example results showing both the chroma and Lab encoding.

Fig. 13.
Fig. 13.

(a) A target tank with a shadow cast across it. (b) Plot of the mean value versus COPA. The chroma encoded real COPA, solid line; chroma encoded imaginary COPA, dotted line; gray-level correlation COPI, dot dashed line.

Fig. 14.
Fig. 14.

(a) Colored plastic cogs. The green cogs are the target. (b) Colored plastic cogs with a shadow cast across some of them.

Fig. 15.
Fig. 15.

(a) Correlation output intensity for the gray-scale correlator with Fig. 14(a) as the input. (b) Correlation output intensity for the gray-scale correlator with Fig. 14(b) as the input.

Fig. 16.
Fig. 16.

Correlation output intensity with Fig. 14(a) as the input using the color correlation method. (a) Chroma real output, (b) chroma imaginary output, (c) Lab real output, and (d) Lab imaginary output. Black is zero in (a) and (c) and gray is zero in (b) and (d).

Fig. 17.
Fig. 17.

Correlation output intensity with Fig. 14(b) as the input using the color correlation method. (a) Chroma real output, (b) chroma imaginary output, (c) Lab real output, and (d) Lab imaginary output. Black is zero in (a) and (c) and gray is zero in (b) and (d).

Fig. 18.
Fig. 18.

Real and imaginary COPA versus the angle rotation of a green tank with a log radius versus angle mapping. The chroma encoded real COPA, solid line; chroma encoded imaginary COPA, dotted line; Lab encoded real COPA, dashed line; Lab encoded imaginary COPA, dot-dash line.

Fig. 19.
Fig. 19.

Optical layout. EL, expanded laser; L, lens; BS, beam splitter; SLM1, reflective SLM; SLM2, transmissive SLM; CCD, CCD cameras.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r=RR+B+G
g=GR+B+G.
c=r+ig
ξ=|F1{Ic(u,v)Fc*(u,v)G(u,v)}|2,
G(k)=12π(exp(k2σ12/2)exp(k2σ22/2)),
ξ(x)=c1(x)c2(x),
=|c1(x)|exp(iθ1(x))|c2(x)|exp(iθ2(x)),
ξ(x)=|c1(x)|exp(iθ1)|c2(x)|exp(iθ2),
=|c1(x)||c2(x)|×exp(i(θ1θ2)).
cLab=a+ib,

Metrics