Abstract

Coherent backscattering (CBS) is a beautiful physical phenomenon that takes place in a highly scattering medium, which has potential application in noninvasive optical property measurement. The current model that explains the CBS cone shape, however, assumes the incoming beam diameter is infinitely large compared to the transport length. In this paper, we evaluate the effect of a finite scalar light illumination area on the CBS cone, both theoretically and experimentally. The quantitative relationship between laser beam size and the CBS cone shape is established by using two different finite beam models (uniform top hat and Gaussian distribution). A series of experimental data with varying beam diameters is obtained for comparison with the theory. Our study shows the CBS cone shape begins to show distortion when beam size becomes submillimeter, and this effect should not be ignored in general. In biological tissue where a normal large beam CBS cone is too narrow for detection, this small beam CBS may be more advantageous for more accurate and higher resolution tissue characterization.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
    [CrossRef]
  2. M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
    [CrossRef]
  3. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
    [CrossRef]
  4. G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
    [CrossRef]
  5. R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
    [CrossRef]
  6. D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
    [CrossRef]
  7. P. C. DeOliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21, 1685–1687 (1996).
    [CrossRef]
  8. K. M. Yoo, G. C. Tang, and R. R. Alfano, “Coherent backscattering of light from biological tissues,” Appl. Opt. 29, 3237–3239 (1990).
    [CrossRef]
  9. G. Yoon, D. N. Roy, and R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).
    [CrossRef]
  10. T. Okamoto and T. Asakura, “Enhanced backscattering of partially coherent light,” Opt. Lett. 21, 369–371 (1996).
    [CrossRef]
  11. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31, 1459–1461 (2006).
    [CrossRef]
  12. M. Tomita and H. Ikari, “Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43, 3716–3719 (1991).
    [CrossRef]
  13. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44, 366–377 (2005).
    [CrossRef]
  14. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
    [CrossRef]
  15. Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
    [CrossRef]
  16. J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
    [CrossRef]
  17. M. Xu, “Low-coherence enhanced backscattering beyond diffusion,” Opt. Lett. 33, 1246–1248 (2008).
    [CrossRef]
  18. H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45, 6292–6300 (2006).
    [CrossRef]
  19. V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
    [CrossRef]
  20. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
    [CrossRef]
  21. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
    [CrossRef]
  22. A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
    [CrossRef]
  23. A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
    [CrossRef]
  24. D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804(2011).
    [CrossRef]
  25. E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
    [CrossRef]
  26. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, and M. S. McAdams, “Boundary-conditions for the diffusion equation in radiative-transfer,” J. Opt. Soc. Am. A 11, 2727–2741(1994).
    [CrossRef]
  27. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
    [CrossRef]
  28. P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
    [CrossRef]
  29. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
    [CrossRef]
  30. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semiinfinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef]

2012 (1)

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

2011 (4)

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804(2011).
[CrossRef]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

2010 (4)

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

2008 (1)

2006 (4)

Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31, 1459–1461 (2006).
[CrossRef]

H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45, 6292–6300 (2006).
[CrossRef]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

2005 (1)

2004 (2)

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

2000 (1)

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

1996 (2)

1994 (1)

1993 (2)

1991 (1)

M. Tomita and H. Ikari, “Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43, 3716–3719 (1991).
[CrossRef]

1990 (1)

1988 (2)

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

1986 (1)

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
[CrossRef]

1985 (2)

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

Akkermans, E.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
[CrossRef]

Alfano, R. R.

Asakura, T.

Backman, V.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45, 6292–6300 (2006).
[CrossRef]

Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31, 1459–1461 (2006).
[CrossRef]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44, 366–377 (2005).
[CrossRef]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

Cheung, C.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

DeOliveira, P. C.

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

Feng, T. C.

Fishkin, J. B.

Gratton, E.

Haskell, R. C.

Havey, M. D.

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

Ikari, H.

M. Tomita and H. Ikari, “Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43, 3716–3719 (1991).
[CrossRef]

Kaiser, R.

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

Kim, M. H.

Kim, Y. L.

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45, 6292–6300 (2006).
[CrossRef]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31, 1459–1461 (2006).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44, 366–377 (2005).
[CrossRef]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

Konger, R. L.

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

Kupriyanov, D. V.

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

Labeyrie, G.

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

Lagendijk, A.

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

Lawandy, N. M.

Li, X.

Liu, J. J.

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

Liu, Y.

Mackowski, D. W.

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804(2011).
[CrossRef]

Maret, G.

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

Maynard, R.

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
[CrossRef]

McAdams, M. S.

Miniatura, C.

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

Mishchenko, M. I.

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804(2011).
[CrossRef]

Mujumdar, S.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

Muller, C. A.

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

Mutyal, N. N.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

Okamoto, T.

Perkins, A. E.

Pradhan, P.

Radosevich, A.

Radosevich, A. J.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

Rogers, J. D.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

Roy, D. N.

Roy, H. K.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44, 366–377 (2005).
[CrossRef]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

Sapienza, R.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

Sokolov, I. M.

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

Song, Q. H.

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

Straight, R. C.

Subramanian, H.

Sukenik, C. I.

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

Svaasand, L. O.

Taflove, A.

Tang, G. C.

Tomita, M.

M. Tomita and H. Ikari, “Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43, 3716–3719 (1991).
[CrossRef]

Tsay, T. T.

Turzhitsky, V.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

Turzhitsky, V. M.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

Van Albada, M. P.

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

Wali, R. K.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Low-coherent backscattering spectroscopy for tissue characterization,” Appl. Opt. 44, 366–377 (2005).
[CrossRef]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, “Coherent backscattering spectroscopy,” Opt. Lett. 29, 1906–1908 (2004).
[CrossRef]

Wiersma, D.

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

Wiersma, D. S.

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

Wolf, P. E.

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
[CrossRef]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

Xu, M.

Xu, Z. B.

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

Yi, J.

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett. 36, 4737–4739 (2011).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

Yoo, K. M.

Yoon, G.

Appl. Opt. (4)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

A. J. Radosevich, J. D. Rogers, V. Turzhitsky, N. N. Mutyal, J. Yi, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2012).
[CrossRef]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at subdiffusion length scales with low-coherence enhanced backscattering,” IEEE J. Sel. Top. Quantum Electron. 16, 619–626 (2010).
[CrossRef]

J. Biomed. Opt. (4)

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt. 16, 097006 (2011).
[CrossRef]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[CrossRef]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef]

J. J. Liu, Z. B. Xu, Q. H. Song, R. L. Konger, and Y. L. Kim, “Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis,” J. Biomed. Opt. 15, 037011 (2010).
[CrossRef]

J. Opt. B (1)

G. Labeyrie, C. A. Muller, D. S. Wiersma, C. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B 2, 672–685 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. (Paris) (2)

E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical-study of the coherent backscattering of light by disordered media,” J. Phys. (Paris) 49, 77–98 (1988).
[CrossRef]

P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, “Optical coherent backscattering by random-media—an experimental-study,” J. Phys. (Paris) 49, 63–75 (1988).
[CrossRef]

Laser Phys. Lett. (1)

D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light from ultracold and optically dense atomic ensembles,” Laser Phys. Lett. 3, 223–243 (2006).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804(2011).
[CrossRef]

Phys. Rev. B (1)

M. Tomita and H. Ikari, “Influence of finite coherence length of incoming light on enhanced backscattering,” Phys. Rev. B 43, 3716–3719 (1991).
[CrossRef]

Phys. Rev. Lett. (4)

R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma, “Anisotropic weak localization of light,” Phys. Rev. Lett. 92, 033903 (2004).
[CrossRef]

P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef]

M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[CrossRef]

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media—analysis of the peak line-shape,” Phys. Rev. Lett. 56, 1471–1474 (1986).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Coherent multiple scattering inside a scattering medium. ki is the incident wave vector and ko is the emission wave vector, R is the radius of the beam.

Fig. 2.
Fig. 2.

Schematic of experimental setup for CBS cone measurement. LS is laser source, ND is neutral density filter, L1 and L2 are lenses, I is iris, BS is beam splitter, BD is beam dump.

Fig. 3.
Fig. 3.

(Left) CBS cones of different intralipid concentrations, and (right) relationship between intralipid concentration and μs calculated from FWHM.

Fig. 4.
Fig. 4.

Experimental CBS profiles with different beam sizes.

Fig. 5.
Fig. 5.

Simulated CBS profiles with different beam sizes. (a) is uniform illumination and (b) is Gaussian beam illumination.

Fig. 6.
Fig. 6.

Comparison of (a) FWHM and (b) enhancement factor of a CBS cone with varying beam sizes: among experimental data, simulation of finite uniform illumination, and Gaussian illumination.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(θ)=38π[1+2z0*+1(1+k|θ|*)2(1+1exp(2z0k|θ|)k|θ|*)].
z0=2*1+Reff3(1Reff),
w=0.7λ2π*.
α(ki,kf)=(c/4π*2)dzdzd2ρexp(z/μ0*)·{1+cos[q·(rr)]}Q(r,r)exp(z/μ*),
Q(r,r)=(1/4πD)(1|rr|1(|rr|2+a2)1/2),
α(θ)=(3/4π2*)d2ρ[1+cos(q·ρ)](1ρ1(ρ2+a2)1/2).
α(θ)=(3/4π2*)[02πdϕ0R(1ρ1(ρ2+a2)1/2)ρdρ+0R02πcos(q·ρ)(1ρ1(ρ2+a2)1/2)ρdϕdρ].
α(θ)=(3/2π*)[R+aR2+a2+0RJ0(qρ)dρ0RJ0(qρ)ρ(ρ2+a2)1/2dρ],
α(ki,kf)=(c/4π*2)dzdzd2ρexp(z/μ0*)·{1+cos[q·(rr)]}Q(r,r)exp(z/μ*)exp(2ρ2/R2),

Metrics