Abstract

Optical tweezers and their various modifications offer a sophisticated way to perform noncontact cell manipulation. In this paper, we quantify forces existing in an elliptical trap formed by two cylindrical lenses and compare the results with a point optical trap case. The trapping efficiency of point and elliptical traps was analyzed by measuring the Q values of both traps. Polystyrene microspheres and red blood cells (RBCs) were used as samples. Stretching of the RBC was taken into account in the Q value measurements. Although the Q value of a point optical trap is larger than that of an elliptical trap when measured for a single RBC, we can manipulate the orientation of an RBC in a point trap with the elliptical trap and can also trap several RBCs simultaneously in the elliptical trap far from the cuvette surfaces by using a long-working-distance water immersion objective. This opens new possibilities for studying light–matter interactions at the cellular level.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  3. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
    [CrossRef]
  4. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
    [CrossRef]
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
    [CrossRef]
  6. P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
    [CrossRef]
  7. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861–4869 (1999).
    [CrossRef]
  8. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7, 533–539 (2000).
    [CrossRef]
  9. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
    [CrossRef]
  10. G. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of biconcave human red blood cells,” Opt. Express 16, 1996–2004 (2008).
    [CrossRef]
  11. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
    [CrossRef]
  12. J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).
  13. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
    [CrossRef]
  14. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef]
  15. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
    [CrossRef]
  16. S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
    [CrossRef]
  17. P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
    [CrossRef]
  18. E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
    [CrossRef]
  19. H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009).
    [CrossRef]
  20. M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
    [CrossRef]
  21. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
    [CrossRef]
  22. A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
    [CrossRef]
  23. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004).
    [CrossRef]
  24. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Groot, and J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
    [CrossRef]
  25. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
    [CrossRef]
  26. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [CrossRef]
  27. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  28. http://24.www.bangslabs.com/products/o/list/Polymer%20Microspheres/PS05N/7 .
  29. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
    [CrossRef]
  30. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef]
  31. D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol. 6, 153–161 (1987).
    [CrossRef]
  32. E. Loth, “Drag of non-spherical solid particles of regular and irregular shape,” Powder Technol. 182, 342–353 (2008).
    [CrossRef]
  33. H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995).
    [CrossRef]
  34. W. R. Platt, Color Atlas and Textbook of Hematology (Pitman Medical Publishing Co, 1969).

2011

M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
[CrossRef]

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

2010

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

2009

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009).
[CrossRef]

2008

2006

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

2005

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
[CrossRef]

2004

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004).
[CrossRef]

2003

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003).
[CrossRef]

2002

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).
[CrossRef]

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

2000

1999

R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861–4869 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

1997

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

1996

1995

1994

W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef]

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

1991

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
[CrossRef]

1989

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef]

1987

D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol. 6, 153–161 (1987).
[CrossRef]

1986

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Andersson-Engels, S.

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ashman, M.

Bareil, P. B.

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef]

Berns, M. W.

Biancaniello, P. L.

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

Bjorkholm, J. E.

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Chiou, A.

Chu, S.

Collins, M.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Crocker, J. C.

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

Dasgupta, R.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef]

de Groot, B. G.

Demetzos, C.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Dharmadhikari, J. A.

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Doornbos, R. M. P.

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

Dufresne, E. R.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

Dziedzic, J. M.

Felgner, H.

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

Gajewski, L.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Galajda, P.

Gauthier, R. C.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Georgopoulos, A.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef]

Greve, J.

Grier, D. G.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

Grover, C. P.

Grover, S. C.

Gupta, P. K.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

He, J.

Hoekstra, A. G.

Hsu, L.

H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009).
[CrossRef]

Inaba, H.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
[CrossRef]

Karlsson, A.

Karmenyan, A.

M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
[CrossRef]

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Kauppila, A.

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
[CrossRef]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Kinnunen, M.

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
[CrossRef]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Korda, P.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Leith, D.

D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol. 6, 153–161 (1987).
[CrossRef]

Liao, G.

Lin, H.-C.

H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009).
[CrossRef]

Loth, E.

E. Loth, “Drag of non-spherical solid particles of regular and irregular shape,” Powder Technol. 182, 342–353 (2008).
[CrossRef]

Makropoulou, M.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Mathur, D.

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

Mohanty, S. K.

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef]

Mourelatou, E. A.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

Müller, O.

Myllylä, R.

M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2, 1803–1814 (2011).
[CrossRef]

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

O’Neil, A. T.

Ormos, P.

Padgett, M. J.

Platt, W. R.

W. R. Platt, Color Atlas and Textbook of Hematology (Pitman Medical Publishing Co, 1969).

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

Sato, S.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
[CrossRef]

Schaeffer, M.

Schliwa, M.

Serafetinides, A. A.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Sheng, Y.

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef]

Skirtach, A. G.

Sloot, P. M. A.

Sonek, G. J.

Spalding, G. C.

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef]

Spyratou, E.

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Swartling, J.

Szewczyk, K.

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Wright, W. H.

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Aerosol Sci. Technol.

D. Leith, “Drag on nonspherical objects,” Aerosol Sci. Technol. 6, 153–161 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. K. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81, 1063–1066 (2005).
[CrossRef]

Biomed. Opt. Express

Biophys J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys J. 87, 1298–1306(2004).
[CrossRef]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Biotechnol. Lett.

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef]

Colloids Surf. A: Physicochem. Eng. Aspects

E. Spyratou, E. A. Mourelatou, A. Georgopoulos, C. Demetzos, M. Makropoulou, and A. A. Serafetinides, “Line optical tweezers: a tool to induce transformations in stained liposomes and to estimate shear modulus,” Colloids Surf. A: Physicochem. Eng. Aspects 349, 35–42 (2009).
[CrossRef]

Curr. Sci.

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Curr. Sci. 86, 1432–1437 (2004).

Electron. Lett.

S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd:YAG laser beams,” Electron. Lett. 27, 1831–1832 (1991).
[CrossRef]

J. Biomed. Opt.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46(1999).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

H.-C. Lin and L. Hsu, “Study of the line optical tweezers characteristics using a novel method and establishing a model for cell sorting,” Jpn. J. Appl. Phys. 48, 072502 (2009).
[CrossRef]

Nature

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef]

Powder Technol.

E. Loth, “Drag of non-spherical solid particles of regular and irregular shape,” Powder Technol. 182, 342–353 (2008).
[CrossRef]

Proc. SPIE

M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619 (2010).
[CrossRef]

A. Kauppila, M. Kinnunen, A. Karmenyan, and R. Myllylä, “Elastic light scattering measurements from multiple red blood cells in elliptical optical tweezers,” Proc. SPIE 8097, 80970K (2011).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

P. L. Biancaniello and J. C. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[CrossRef]

P. Korda, G. C. Spalding, E. R. Dufresne, and D. G. Grier, “Nanofabrication with holographic optical tweezers,” Rev. Sci. Instrum. 73, 1956–1957 (2002).
[CrossRef]

Other

http://24.www.bangslabs.com/products/o/list/Polymer%20Microspheres/PS05N/7 .

W. R. Platt, Color Atlas and Textbook of Hematology (Pitman Medical Publishing Co, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic setup of the optical trapping system: L, Nd:YAG laser; BE, beam expander; HP1, 2, half-wave plate; M1–3, mirror; PC1, 2, polarizing cube beam splitter; CL1, 2, cylindrical lens; CCD, video camera; FL, focusing lens; F, filter for infrared light; HM, hot mirror; OBJ, microscope objective; XY, translation stage.

Fig. 2.
Fig. 2.

Images of an RBC in elliptical and point optical traps observed from the direction of the optical axis. The arrow indicates the direction of cell movement in the immersion medium. The line and point represent a schematic of the trap’s cross section.

Fig. 3.
Fig. 3.

Twelve 6.00 μm microspheres trapped with elliptical trap. The objective used was an Olympus LUMPlan Fl.

Fig. 4.
Fig. 4.

Seven RBCs trapped at the elliptical trap.

Fig. 5.
Fig. 5.

Rotation of a RBC from a (a) vertical to a (b) horizontal position.

Fig. 6.
Fig. 6.

Differential near-field light scattering image of three RBCs. Incident light is marked with an arrow. The scale bar is 10 μm.

Tables (6)

Tables Icon

Table 1. Objectives Used in the Experiments

Tables Icon

Table 2. Major Axis Length of Two-Lens Elliptical Optical Trap with Different Objectives

Tables Icon

Table 3. Optical Powers and Escape Velocities for 3.10 μm and 6.00 μm Microspheres in Point Optical Trap

Tables Icon

Table 4. Optical Powers and Escape Velocities for 3.10 μm and 6.00 μm Microspheres in Elliptical Optical Trap

Tables Icon

Table 5. Optical Powers and Escape Velocities for RBCs in Optical Point and Elliptical Traps

Tables Icon

Table 6. Transverse Q Values for 3.10 μm and 6.00 μm Microspheres at the Bottom of the Cuvette and 100μm Above the Bottom for Point Optical Trap and for One- and Two-Lens Elliptical Traps at the Bottom Using an Olympus Water Immersion Objective (N=number of measurements)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q=c·Fa,tP·n0,
Fa=Vs·(ρ·gγ),
Ft=6πηrv,
Ft=13·6πηrnv+23·6πηrsv,
As=4π(apbp+apcp+bpcp3)1/p,
An=πbc.

Metrics