Abstract

Color code is widely employed in coded structured light to reconstruct the three-dimensional shape of objects. Before determining the correspondence, a very important step is to identify the color code. Until now, the lack of an effective evaluation standard has hindered the progress in this unsupervised classification. In this paper, we propose a framework based on the benchmark to explore the new frontier. Two basic facets of the color code identification are discussed, including color feature selection and clustering algorithm design. First, we adopt analysis methods to evaluate the performance of different color features, and the order of these color features in the discriminating power is concluded after a large number of experiments. Second, in order to overcome the drawback of K-means, a decision-directed method is introduced to find the initial centroids. Quantitative comparisons affirm that our method is robust with high accuracy, and it can find or closely approach the global peak.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription