Abstract

Polarization-gating has been widely used to probe superficial tissue structures, but the penetration depth properties of this method have not been completely elucidated. This study employs a polarization-sensitive Monte Carlo method to characterize the penetration depth statistics of polarization-gating. The analysis demonstrates that the penetration depth depends on both the illumination-collection geometry [illumination-collection area (R) and collection angle (θc)] and on the optical properties of the sample, which include the scattering coefficient (μs), absorption coefficient (μa), anisotropy factor (g), and the type of the phase function. We develop a mathematical expression relating the average penetration depth to the illumination-collection beam properties and optical properties of the medium. Finally, we quantify the sensitivity of the average penetration depth to changes in optical properties for different geometries of illumination and collection. The penetration depth model derived in this study can be applied to optimizing application-specific fiber-optic probes to target a sampling depth of interest with minimal sensitivity to the optical properties of the sample.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley and B. R. Masters, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087–1089 (2004).
    [CrossRef]
  3. A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054 (2004).
    [CrossRef]
  4. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
    [CrossRef]
  5. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
    [CrossRef]
  6. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
    [CrossRef]
  7. L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
    [CrossRef]
  8. A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
    [CrossRef]
  9. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
    [CrossRef]
  10. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317–7328 (2007).
    [CrossRef]
  11. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005).
    [CrossRef]
  12. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004).
    [CrossRef]
  13. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143(1997).
    [CrossRef]
  14. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17, 2780–2796 (2009).
    [CrossRef]
  15. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).
    [CrossRef]
  16. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).
    [CrossRef]
  17. L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
    [CrossRef]
  18. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
    [CrossRef]
  19. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
    [CrossRef]
  20. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef]
  21. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [CrossRef]
  22. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
    [CrossRef]
  23. Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
    [CrossRef]
  24. M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
    [CrossRef]
  25. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
    [CrossRef]
  26. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
    [CrossRef]
  27. A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
    [CrossRef]
  28. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
    [CrossRef]
  29. M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996).
    [CrossRef]
  30. X. Guo, M. F. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
    [CrossRef]
  31. X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
    [CrossRef]
  32. Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
    [CrossRef]
  33. Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
    [CrossRef]
  34. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005).
    [CrossRef]
  35. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005).
    [CrossRef]
  36. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
    [CrossRef]
  37. M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
    [CrossRef]
  38. A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
    [CrossRef]
  39. J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009).
    [CrossRef]
  40. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
    [CrossRef]
  41. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef]
  42. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
    [CrossRef]
  43. I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
    [CrossRef]
  44. H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).
  45. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. Sloot, F. F. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef]
  46. R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
    [CrossRef]
  47. A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
    [CrossRef]
  48. N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
    [CrossRef]

2011 (3)

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

2010 (1)

2009 (4)

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17, 2780–2796 (2009).
[CrossRef]

J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009).
[CrossRef]

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

2008 (4)

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (10)

Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
[CrossRef]

Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
[CrossRef]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).
[CrossRef]

J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005).
[CrossRef]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).
[CrossRef]

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005).
[CrossRef]

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005).
[CrossRef]

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

2004 (4)

2003 (4)

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
[CrossRef]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
[CrossRef]

2002 (4)

L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

2001 (1)

M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
[CrossRef]

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef]

1999 (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

1997 (2)

1996 (1)

M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996).
[CrossRef]

1993 (2)

1992 (1)

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

A’Amar, O.

Aarnoudse, J. G.

Aaron, J.

Agrawal, A.

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005).
[CrossRef]

Alfano, R. R.

Amelink, A.

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

Arifler, D.

Asakura, T.

M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996).
[CrossRef]

Backman, V.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009).
[CrossRef]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[CrossRef]

Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
[CrossRef]

Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Bard, M. P.

Bender, J. E.

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

Bennett, A.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Bianchi, L. K.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

Bigio, I. J.

Brand, R. E.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Brasky, J.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Bright, S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Brown, W. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Burgers, S. A.

Capoglu, I. R.

Carretta, E.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Chang, S. K.

Cornwell, M. L.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Crawford, S. E.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Cruz, M. D.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Dassel, A. C. M.

de Mul, F. F.

de Mul, F. F. M.

Dellon, E. S.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Demos, S. G.

Dogariu, M.

M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996).
[CrossRef]

Drezek, R. A.

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005).
[CrossRef]

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

Ediger, M. N.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Galanko, J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Gebhart, S. C.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Gendron-Fitzpatrick, A.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

Gibson, T. P.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Gillenwater, A.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

Gillenwater, A. M.

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).
[CrossRef]

Goldberg, M. J.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Goldblum, J. R.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Gomes, A.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Gomes, A. J.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

Graaff, R.

Greve, J.

Gu, H. M.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Guo, X.

X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

X. Guo, M. F. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
[CrossRef]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Hasabou, N.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Hussain, I. A.

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Jacques, S.

Jacques, S. L.

Jaillon, F.

Jakovljevic, M.

Jameel, M.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

Jin, Y.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Kan, C. W.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

Keller, J. B.

M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
[CrossRef]

Kim, Y.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
[CrossRef]

Kim, Y. L.

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[CrossRef]

Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Knight, B.

Koelink, M. H.

Koetsier, J. L.

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Kromin, A. K.

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Kromine, A.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

Kun, C.

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Kunte, D. P.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef]

Li, X.

Lin, S. P.

Liu, Q.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef]

Liu, Y.

Lu, J. J.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Mack, V.

Madanick, R. D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Markey, M. K.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

Marshek-Stone, C. L.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

Masters, B. R.

J. B. Pawley and B. R. Masters, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Matchette, L. S.

Moscoso, M.

M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
[CrossRef]

Mutyal, N.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Myakov, A.

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Nieman, L.

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Nieman, L. T.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17, 2780–2796 (2009).
[CrossRef]

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

Nishioka, N. S.

Overholt, B. F.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Palmer, G. M.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

Panjehpour, M.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Papanicolaou, G.

M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
[CrossRef]

Pavlova, I.

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).
[CrossRef]

Pawley, J. B.

J. B. Pawley and B. R. Masters, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

Pfefer, J.

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

Pfefer, T. J.

Prahl, S.

Prahl, S. A.

Quan, L.

Radosevich, A.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

Ramanujam, N.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef]

L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27, 104–106 (2002).
[CrossRef]

Ramella-Roman, J.

Ramella-Roman, J. C.

J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

Reif, R.

Richards-Kortum, R.

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).
[CrossRef]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Rinehart, M. T.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Rogers, J.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Rogers, J. D.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef]

Ross, A. M.

Roy, H.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

Roy, H. K.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Ruderman, S.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Saint-Jalmes, H.

Schomacker, K. T.

Schwarz, R. A.

Shaheen, N. J.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Siegel, M. P.

Skala, M. C.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

Sloot, P. M.

Sokolov, K.

L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17, 2780–2796 (2009).
[CrossRef]

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Sterenborg, H. J.

Stoyneva, V.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

Stypula, Y.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Taflove, A.

Terry, N. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Tittel, F. K.

Tiwari, A. K.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Trembath, D.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Turzhitsky, V.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1, 1034–1046 (2010).
[CrossRef]

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Turzhitsky, V. M.

Utzinger, U.

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Vakil, P.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

van Gemert, M. J.

Vitkin, A.

X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

X. Guo, M. F. Wood, and A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
[CrossRef]

Vrotsos, K. M.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

Wali, R. K.

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[CrossRef]

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Wang, A. M.

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

Wang, L.

Wax, A.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Weber, C. R.

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

Wei, H. J.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Welch, A. J.

Wicky, L.

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

Williams, M. D.

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

Wood, M. F.

Wood, M. F. G.

X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

Woosley, J. T.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Wu, G. Y.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Xing, D.

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Yang, L.

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Yen, E.

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

Yi, J.

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

Young, K. L.

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

Zhu, C.

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef]

Zhu, Y.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Ziefle, C. G.

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Zijistra, W. G.

Zijp, J. R.

Appl. Opt. (14)

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. Sloot, F. F. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef]

S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef]

S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef]

S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143(1997).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41, 4712–4721 (2002).
[CrossRef]

F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
[CrossRef]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004).
[CrossRef]

A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054 (2004).
[CrossRef]

Y. Liu, Y. L. Kim, and V. Backman, “Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating,” Appl. Opt. 44, 2288–2299 (2005).
[CrossRef]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005).
[CrossRef]

M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006).
[CrossRef]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317–7328 (2007).
[CrossRef]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008).
[CrossRef]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

Biomed. Opt. Express (1)

Cancer Lett. (1)

A. K. Tiwari, S. E. Crawford, A. Radosevich, R. K. Wali, Y. Stypula, D. P. Kunte, N. Mutyal, S. Ruderman, A. Gomes, M. L. Cornwell, M. D. Cruz, J. Brasky, T. P. Gibson, V. Backman, and H. K. Roy, “Neo-angiogenesis and the premalignant micro-circulatory augmentation of early colon carcinogenesis,” Cancer Lett. 306, 205–213 (2011).
[CrossRef]

Clin. Cancer Res. (1)

A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009).
[CrossRef]

Gastroenterology (2)

H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008).
[CrossRef]

N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of dysplasia in Barrett’s esophagus with in vivo depth-resolved nuclear morphology measurements,” Gastroenterology 140, 42–50 (2011).
[CrossRef]

Gut. (1)

R. K. Wali, H. K. Roy, Y. L. Kim, Y. Liu, J. L. Koetsier, D. P. Kunte, M. J. Goldberg, V. Turzhitsky, and V. Backman, “Increased microvascular blood content is an early event in colon carcinogenesis,” Gut. 54, 654–660 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18, 1313–1325 (2011).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019–1026 (1999).
[CrossRef]

J. Biomed. Opt. (7)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8, 237–247 (2003).
[CrossRef]

A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005).
[CrossRef]

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10, 44016 (2005).
[CrossRef]

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008).
[CrossRef]

I. Pavlova, C. R. Weber, R. A. Schwarz, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, “Fluorescence spectroscopy of oral tissue: Monte Carlo modeling with site-specific tissue properties,” J. Biomed. Opt. 14, 014009 (2009).
[CrossRef]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002).
[CrossRef]

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (1)

M. Moscoso, J. B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18, 948–960(2001).
[CrossRef]

Lasers Surg. Med. (2)

M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004).
[CrossRef]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000).
[CrossRef]

Opt. Commun. (1)

X. Guo, M. F. G. Wood, and A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

Opt. Eng. (1)

M. Dogariu and T. Asakura, “Photon pathlength distribution from polarized backscattering in random media,” Opt. Eng. 35, 2234–2239 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

World J. Gastroenterol. (1)

H. J. Wei, D. Xing, J. J. Lu, H. M. Gu, G. Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11, 2413–2419 (2005).

Other (1)

J. B. Pawley and B. R. Masters, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Geometry of the MC simulations. Pencil beam of linearly polarized light is incident in the z direction upon a turbid medium whose optical properties are characterized by the anisotropy factor (g), scattering and absorption coefficients (μs and μa), and shape of the refractive index correlation function (m). The exit angle of the photons collected (θc) is recorded and convolution is used to extend the infinitely narrow source to an illumination-collection aperture of radius R.

Fig. 2.
Fig. 2.

Polarization-gated measurements with a fiber-optic probe on a wedge shaped phantom to experimentally measure the penetration depth. (a) A wedge shaped phantom was constructed by curing PDMS resin between two glass slides separated by a 5 mm metal spacer; (b) a ray tracing of the illumination and collection beams through the polarization-gated probe. The illumination and collection areas overlap on the medium surface. The design of the probe is symmetric such that there is another collection fiber on the other side of the illumination fiber; (c) measurements were taken on the wedge phantom with the probe across the length of the phantom corresponding to different thicknesses.

Fig. 3.
Fig. 3.

Polarized MC results of the differential average penetration depth τ as a function of the illumination and collection geometry: (a) influence of the illumination/collection radius Rμt with the collection angle θc=018°; (b) and the effect of θc with Rμt=9. The fixed values of the other sample parameters were μa=0, g=0.9, and m=1.5.

Fig. 4.
Fig. 4.

Polarized MC results summarizing the influence of the phase function on the average penetration depth. (a) Comparison of the average penetration depth derived from MC Mie and Whittle–Matérn phase functions for different θc and m=1.5 in the Whittle–Matérn case; (b) Influence of the shape of the refractive index correlation function, parameterized by m in the Whittle–Matérn model, on the average penetration depth for θc=018°. The fixed values of the other sample and geometry parameters were g=0.75, μa=0, and Rμt=9.

Fig. 5.
Fig. 5.

Polarized MC results illustrating the effect of sample optical properties on the average penetration depth: (a) influence of the anisotropy factor g on τ for μa=0; and (b) influence of the absorption coefficient μa on τ for g=0.9. Note that the dependence of T on the scattering coefficient μs is already explicit in Fig. 1(a). The fixed values of the other sample and geometry properties were Rμt=9, θc=018°, and m=1.5.

Fig. 6.
Fig. 6.

Linear behavior of stretched exponential parameters as a function of θc.

Fig. 7.
Fig. 7.

Comparison of the average penetration depth determined by the analytical model equation (τequation) versus the average penetration depth calculated from the MC simulations (τMC). Data are for a wide range of sample properties and illumination-collection geometries that have been listed in Section 2. (a) τequation plotted versus τMC with the line of unity showed for comparison purposes. The average percent error across all data points and the ideal line is 5%; (b) the percentage error between τMC and τequation as a function of μa and θc with g=0.93, Rμt=9, and m=1.5.

Fig. 8.
Fig. 8.

Sensitivity (S) of the average penetration depth to the sample optical properties for different illumination/collection geometries. (a) Penetration depth sensitivity to the total reduced scattering coefficient μt as a function of R and θc with ua=0, g=0.9 and m=1.5; (b) penetration depth sensitivity to the scattering coefficient μs as a function of R and θc with ua=0, g=0.9 and m=1.5. The derivative is evaluated about μs=20mm1; (c) depth sensitivity to the anisotropy factor g as a function of R and θc with μa=0, and m=1.5. The derivative is evaluated about g=0.9; (d) sensitivity to the absorption coefficient μa with g=0.9 and m=1.5 and the derivative calculated about μa/μs=0.04.

Tables (1)

Tables Icon

Table 1. Linear Fitting Coefficients

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Bn(r)dn225/2m|Γ(m(3/2))|(rlc)m3/2Km3/2(rlc).
Φn(κ)=dn2lc3Γ(m)(1+κ2lc2)mπ3/2|Γ(m(3/2))|.
SS=R(γ)M(θ)R(ϕ)So,
M(θ)=π4k4Φn(2ksinθ2)[m11(θ)=1+cos2(θ)m12(θ)=cos2(θ)100m21(θ)=m12(θ)m22(θ)=m11(θ)0000m33(θ)=2cosθ0000m44(θ)=m33(θ)].
F(θ,ϕ)=π4k4Φn(2ksinθ2)(m11(θ)Io+[m12(θ)(Qocos2ϕ+Uosin2ϕ)]+[m13(θ)(Uocos2ϕQosin2ϕ)]+m14(θ)Vo).
τ=z=0NzμtΔI(zμt)z=0NΔI(zμt),
τ=a(1exp(b(Rμt)c)).
τ=a(1exp(b(Rμt)c)).
S=|Δz/zΔOP/OP|,

Metrics