Abstract

Flexible silicone membranes are key components for tunable optical lenses. The elastic operation of the membranes impedes the use of classical layer systems for an antireflective (AR) effect. To overcome this limitation, we equipped optical elastomer membranes with “moth-eye” structures directly in the flexible silicone substrate. The manufacturing of the AR structures in the flexible membrane includes a mastering process based on block copolymer micelle nanolithography followed by a replication method. We investigate the performance of the resulting AR structures under strain of up to 20% membrane expansion. A significant transmittance enhancement of up to 2.5% is achieved over the entire visible spectrum, which means that more than half of the surface reflection losses are compensated by the AR structures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).
  2. D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  3. J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
    [CrossRef]
  4. J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.
  5. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–1857 (2008).
    [CrossRef]
  6. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
    [CrossRef]
  7. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).
  8. U. Schulz, “Coating on plastics,” in Handbook of Plastic Optics, Bäumer, ed. (Wiley-VCH, 2005), pp. 149–180.
  9. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  10. R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
    [CrossRef]
  11. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
    [CrossRef]
  12. Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
    [CrossRef]
  13. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
    [CrossRef]
  14. L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed.(Oxford University, 2009).
  15. J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
    [CrossRef]
  16. W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain (McGraw-Hill, 2002).
  17. G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
    [CrossRef]
  18. Nippon Zeon: Zeonex brochure (Nippon Zeon Co., Ltd, Tokyo, 1998).
  19. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
    [CrossRef]

2011 (1)

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

2010 (1)

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

2009 (4)

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

2008 (3)

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–1857 (2008).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

2003 (1)

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

2001 (1)

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[CrossRef]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Baer, E.

Beadie, G.

Berdichevsky, Y.

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Brunner, R.

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Budynas, R. G.

W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain (McGraw-Hill, 2002).

Burger, T.

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Choi, J.

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Draheim, J.

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Helgert, M.

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Hiltner, A.

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

Kazmierczak, T.

Khanarian, G.

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[CrossRef]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Land, M. F.

M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).

Lehr, D.

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Lepkowicz, R. S.

Lien, V.

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Lo, Y.-H.

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Morhard, Ch.

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Mueller, C.

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

Müller, C.

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

Nilsson, D.-E.

M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Ponting, M.

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Sandrock, M. L.

Schneider, F.

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Schulz, U.

U. Schulz, “Coating on plastics,” in Handbook of Plastic Optics, Bäumer, ed. (Wiley-VCH, 2005), pp. 149–180.

Shirk, J. S.

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Spatz, J.

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Spatz, J. P.

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Sundermann, M.

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Treloar, L. R. G.

L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed.(Oxford University, 2009).

Waibel, P.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11823 (2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Wiggins, M. J.

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Yang, D. Y.

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Yang, Y.

Young, W. C.

W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain (McGraw-Hill, 2002).

Appl. Phys. Lett. (1)

D. Y. Yang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

J. Micromech. Microeng. (3)

J. Draheim, F. Schneider, R. Kamberger, C. Mueller, and U. Wallrabe, “Fabrication of a fluidic membrane lens system,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18, 065008 (2008).
[CrossRef]

J. Draheim, F. Schneider, R. Kamberger, C. Müller, and U. Wallrabe, “Fabrication of a fluidic membrane lens,” J. Micromech. Microeng. 19, 095013 (2009).
[CrossRef]

Laser Photonics Rev. (1)

R. Brunner, O. Sandfuchs, C. Pacholski, Ch. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev.1–19 (2011).
[CrossRef]

Nano Lett. (1)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Nanotechnology (1)

Ch. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Nat. Photon. (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart,” Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photon. 1, 176–179 (2007).

Opt. Eng. (1)

G. Khanarian, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40, 1024–1029 (2001).
[CrossRef]

Opt. Express (2)

Sensors Actuators A (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors Actuators A 151, 95–99(2009).
[CrossRef]

Other (6)

M. F. Land and D.-E. Nilsson, Animal Eyes (Oxford University, 2002).

J. Draheim, T. Burger, F. Schneider, and U. Wallrabe, “Fluidic zoom lens system using two single chamber adaptive lenses with integrated actuation,” in Proceedings of IEEE Conference on MEMS 2011 (IEEE, 2011), pp. 692–695.

Nippon Zeon: Zeonex brochure (Nippon Zeon Co., Ltd, Tokyo, 1998).

W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain (McGraw-Hill, 2002).

U. Schulz, “Coating on plastics,” in Handbook of Plastic Optics, Bäumer, ed. (Wiley-VCH, 2005), pp. 149–180.

L. R. G. Treloar, The Physics of Rubber Elasticity, 3rd ed.(Oxford University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Manufacturing process for “moth-eye” structures on a glass substrate and the transfer to polydimethylsiloxane (PDMS) membranes. (a) Spin coating a solution with monodisperse micelles loaded with gold salts; (b) Monolayer of quasi-hexagonally arranged gold-loaded micelles; (c) After plasma treatment, a monolayer of quasi-hexagonally arranged gold particles remains; (d), (e) RIE-etching shapes the “moth-eye” structures in the glass substrate; (f) Pouring PDMS into the mold and degassing; (g) Placing a cover glass defining the second interface; (h) After curing in an oven the final PDMS membrane is peeled off the mold.

Fig. 2.
Fig. 2.

SEM image of a quartz substrate covered with incorporated AR-subwavelength structures generated by the BCML/RIE process. The hard quartz substrate serves as a master element for the subsequent replication process to transfer the “moth-eye” structures into the PDMS membrane. A periodicity of approximately 80 nm and a height of 200 nm can be observed for the conelike pillars.

Fig. 3.
Fig. 3.

Unit structures for the theoretical calculations with RCWA. The basic structures are positive and negative Gaussian profiles. An applied strain will change the shape of the individual structures.

Fig. 4.
Fig. 4.

Calculated transmittance for positive protuberances at normal incidence as a function of the wavelength. Each of the three diagrams includes the results for the different extension states, from 0% to 20% extension, in steps of 5%. (a) Polarization vector of the incident beam parallel to the extension direction; (b) 90° rotated polarization vector.

Fig. 5.
Fig. 5.

Calculated transmittance for negative structures at normal incidence as a function of the wavelength. Each of the three diagrams includes the results for the different extension states, from 0% to 20% extension, in steps of 5%. (a) Polarization vector of the incident beam parallel to the extension direction; (b) 90° rotated polarization vector.

Fig. 6.
Fig. 6.

Comparison of the transmittance of “moth-eye” structured PDMS membrane (solid line) and unstructured reference sample (dashed line) for different strain factors in a wavelength range from 400 to 800 nm. A significant transmittance enhancement over a broad spectral range up to 2.5% becomes visible.

Metrics