Abstract

There is an increasing demand for transdermal high-data-rate communication for use with in-body devices, such as pacemakers, smart prostheses, neural signals processors at the brain interface, and cameras acting as artificial eyes as well as for collecting signals generated within the human body. Prominent requirements of these communication systems include (1) wireless modality, (2) noise immunity and (3) ultra-low-power consumption for the in-body device. Today, the common wireless methods for transdermal communication are based on communication at radio frequencies, electrical induction, or acoustic waves. In this paper, we will explore another alternative to these methods—optical wireless communication (OWC)—for which modulated light carries the information. The main advantages of OWC in transdermal communication, by comparison to the other methods, are the high data rates and immunity to external interference availed, which combine to make it a promising technology for next-generation systems. In this paper, we present a mathematical model and experimental results of measurements from direct link and retroreflection link configurations with Gallus gallus domesticus derma as the transdermal channel. The main conclusion from this work is that an OWC link is an attractive communication solution in medical applications. For a modulating retroreflective link to become a competitive solution in comparison with a direct link, low-energy-consumption modulating retroreflectors should be developed.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory

W. S. Rabinovich, C. I. Moore, R. Mahon, P. G. Goetz, H. R. Burris, M. S. Ferraro, J. L. Murphy, L. M. Thomas, G. C. Gilbreath, M. Vilcheck, and M. R. Suite
Appl. Opt. 54(31) F189-F200 (2015)

FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers

Nourhan Eid, Robert Boeck, Hasitha Jayatilleka, Lukas Chrostowski, Wei Shi, and Nicolas A. F. Jaeger
Opt. Express 24(25) 29009-29021 (2016)

Building Optical Packet Networks Without Buffering, Signaling or Header Processing

Thomas Bonald, Davide Cuda, Raluca-Maria Indre, and Ludovic Noirie
J. Opt. Commun. Netw. 5(4) 294-304 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription