Abstract

In this paper, a white-light full-field optical coherence tomography is developed to provide three-dimensional imaging of the development of a mouse embryo with ultrahigh-resolution. Spatial resolution of 1.8μm×1.12μm (transverse×axial) is achieved owing to the extremely short coherence length of the light source and optimized compensation of dispersion mismatch. A shot-noise limited detection sensitivity of 80 dB is obtained at an acquisition time of 5 seconds per image. To enable in vivo imaging of the mouse embryo development, a homemade incubator is applied to provide appropriate CO2 concentration, temperature, and humidity. An electronic light shutter is used to control the light source in order to avoid unnecessary exposure to the embryo development when the sample is not being scanned. To demonstrate our method, in vivo time series two-dimensional images of the in vitro fertilization process of mouse oocytes at the germinal vesicles stage are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
    [CrossRef]
  3. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef]
  4. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  5. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  7. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef]
  8. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
    [CrossRef]
  9. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
    [CrossRef]
  10. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).
    [CrossRef]
  11. R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
    [CrossRef]
  12. V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography: imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11, 1650–1658 (2003).
    [CrossRef]
  13. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
    [CrossRef]
  14. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. C. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
    [CrossRef]
  15. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14, 736–748 (2006).
    [CrossRef]
  16. M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
    [CrossRef]
  17. Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
    [CrossRef]
  18. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
    [CrossRef]
  19. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008).
    [CrossRef]
  20. B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
    [CrossRef]
  21. J. Tian, “Medical Imaging Processing Group,” http://www.3dmed.net .
  22. W. J. Choi, D. I. Jeon, S. Ahn, J. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010).
    [CrossRef]

2010

2009

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

2008

2007

2006

2005

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
[CrossRef]

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

2003

2002

1998

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1996

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Adler, D. C.

Ahn, S.

Bai, W.

R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
[CrossRef]

Beaurepaire, E.

Belding, J.

Blanchot, L.

Boccara, A. C.

Bodmer, R.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Boppart, S. A.

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Bouma, B. E.

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Brezinski, M. E.

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, D.

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
[CrossRef]

Choi, W. J.

Choma, M. A.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Dubois, A.

Efimov, I. R.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. C.

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fukudal, J.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Gargesha, M.

Georges, P.

Gordon, M.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Honda, Y.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Hu, Z.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huber, R.

Iftimia, N.

Itoh, M.

Izatt, J. A.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Izatt, S. D.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Jenkins, M. W.

Jeon, D. I.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kawamura, K.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Kim, S.

Kodama, H.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Lebec, M.

Lee, B. H.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Lo, S.

Makita, S.

Mok, A.

Moreau, J.

Nakamura, Y.

Nikolski, V. P.

Oh, W. Y.

Pekar, J.

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Qi, B.

Robert, M. D.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Rollins, A. M.

Rothenberg, F.

Roy, D.

Sacchet, D.

Saint-Jalmes, H.

Sato, N.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Sato, T.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Seng-Yue, E.

Shimizu, Y.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tanaka, T.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Tanikawa, H.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Tearney, G. J.

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
[CrossRef]

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Vabre, L.

Vitkin, I.

Wang, B.

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

Wang, R.

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
[CrossRef]

Watanabe, M.

Wessells, J.

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Wilson, B.

Wilson, D. L.

Wojtkowski, M.

Xue, P.

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
[CrossRef]

Yamanari, M.

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yelin, R.

Yoon, J.

Yun, S. H.

Zheng, J.

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

Circulation

M. A. Choma, S. D. Izatt, M. D. Robert, J. Wessells, R. Bodmer, and J. A. Izatt, “In vivo Imaging of the adult drosophila melanogaster heart with real-time optical coherence tomography,” Circulation 114, e35–e36 (2006).
[CrossRef]

Dev. Biol.

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Investigation of developing embryonic morphology using optical coherence tomography,” Dev. Biol. 177, 54–63 (1996).
[CrossRef]

J. Biomed. Opt.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef]

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Mol. Hum. Reprod.

Y. Honda, H. Tanikawa, J. Fukudal, K. Kawamura, N. Sato, T. Sato, Y. Shimizu, H. Kodama, and T. Tanaka, “Expression of Smac/DIABLO in mouse preimplantation embryos and its correlation to apoptosis and fragmentation,” Mol. Hum. Reprod. 11, 183–188 (2005).
[CrossRef]

Nat. Med.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express

V. X. D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography: imaging in vivo cardiac dynamics of Xenopus laevis,” Opt. Express 11, 1650–1658 (2003).
[CrossRef]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13, 1131–1137 (2005).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726–735 (2006).
[CrossRef]

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14, 736–748 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. C. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[CrossRef]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15, 7103–7116 (2007).
[CrossRef]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16, 19434–19446 (2008).
[CrossRef]

W. J. Choi, D. I. Jeon, S. Ahn, J. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18, 23285–23295 (2010).
[CrossRef]

Opt. Lett.

Proc. SPIE

R. Wang, P. Xue, W. Bai, and D. Chen, “Full-field OCT for developmental biology,” Proc. SPIE 6534, 65341U (2007).
[CrossRef]

B. Wang, J. Zheng, R. Wang, D. Chen, and P. Xue, “Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo,” Proc. SPIE 7382, 738257 (2009).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other

J. Tian, “Medical Imaging Processing Group,” http://www.3dmed.net .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. In this schematic representation, only one point of the object is imaged by one pixel of CCD camera. For an actual measurement, wide-field illumination is used to acquire two-dimensional images in parallel without scanning. The incubator is not shown in this picture. BS, beam splitter.

Fig. 2.
Fig. 2.

Homemade incubator in the sampling arm. The incubator is mounted on the translation stage. When the system is not scanning in vivo objects, the incubator can be removed from the sample arm.

Fig. 3.
Fig. 3.

Ootidogenesis of an oocyte in our homemade incubator recorded with the transmitting microscopic imaging built within our setup. (A) An oocyte that has just been transferred to the incubator. (B) The oocyte ootidogenesis, in which the first polar body is clearly indentified. Each image has a size of 227×227μm.

Fig. 4.
Fig. 4.

Reconstructed 3D image of fixed oocytes. The reconstructed domain has a size of 227×227×75μm.

Fig. 5.
Fig. 5.

OCT and corresponding transmitting microscopic images of the oocyte IVF process. A, B, and C are the OCT images acquired about 30 min, 100 min and 250 min. D, E, and F are the corresponding transmitting microscopic images. When IVF happens, the nuclei of the three oocytes disappear. Each image is 227×227μm.

Metrics