Abstract

We investigated the dependence of the scattering and absorption coefficients of particles in dense suspensions by the low-coherence fiber optic dynamic light scattering (FODLS) technique. The estimated particle size was used to calculate the scattering coefficient of particles suspended in dense suspensions. The path-length resolved intensity distributions of light backscattered from absorbing dense suspensions were investigated experimentally. The absorption coefficient can be obtained by applying the measured path-length resolved intensity distributions to the modified Lambert–Beer law. As a result, the low-coherence FODLS technique can simultaneously measure the scattering and absorption coefficients of particles in absorbing dense suspensions, and the scattering and absorption coefficients are independent of each other in dense suspensions in the low-scattering regime of 2ld<10*.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
    [CrossRef]
  2. A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
    [CrossRef]
  3. H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
    [CrossRef]
  4. J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
    [CrossRef]
  5. K. Vishwanath and M. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express 13, 7466–7482 (2005).
    [CrossRef]
  6. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  7. C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
    [CrossRef]
  8. A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
    [CrossRef]
  9. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
    [CrossRef]
  10. B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence Interferometry,” Opt. Express 15, 9157–9165 (2007).
    [CrossRef]
  11. K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interfereometer,” Opt. Lett. 30, 555–557(2005).
    [CrossRef]
  12. C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
    [CrossRef]
  13. A. Wax, C. Yang, R. R. Dasari, and M. S. Feld, “Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering,” Appl. Opt. 40, 4222–4227(2001).
    [CrossRef]
  14. R. V. Maikala, “Modified Beer’s Law-historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue,” Int. J. Ind. Ergon. 40, 125–134 (2010).
    [CrossRef]
  15. H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
    [CrossRef]
  16. H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
    [CrossRef]
  17. K. Ishii and T. Iwai, “Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 47, 8397–8401 (2008).
    [CrossRef]
  18. H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
    [CrossRef]
  19. J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
    [CrossRef]
  20. H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
    [CrossRef]
  21. Y. Tsuchiya and T. Urakami, “Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer–Lambert law,” Opt. Commun. 144, 269–280 (1997).
    [CrossRef]
  22. A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
    [CrossRef]
  23. H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
    [CrossRef]
  24. O. Coquoz, L. O. Svaasand, and B. J. Tromberg, “Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration,” Appl. Opt. 40, 6281–6291 (2001).
    [CrossRef]

2012 (1)

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

2010 (4)

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
[CrossRef]

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

R. V. Maikala, “Modified Beer’s Law-historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue,” Int. J. Ind. Ergon. 40, 125–134 (2010).
[CrossRef]

2009 (1)

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
[CrossRef]

2008 (3)

K. Ishii and T. Iwai, “Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 47, 8397–8401 (2008).
[CrossRef]

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
[CrossRef]

2007 (1)

2006 (1)

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

2005 (4)

H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
[CrossRef]

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[CrossRef]

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interfereometer,” Opt. Lett. 30, 555–557(2005).
[CrossRef]

K. Vishwanath and M. Mycek, “Time-resolved photon migration in bi-layered tissue models,” Opt. Express 13, 7466–7482 (2005).
[CrossRef]

2004 (1)

A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[CrossRef]

2002 (2)

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

2001 (2)

1998 (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[CrossRef]

1997 (2)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Y. Tsuchiya and T. Urakami, “Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer–Lambert law,” Opt. Commun. 144, 269–280 (1997).
[CrossRef]

1994 (1)

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Alfano, R. R.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[CrossRef]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[CrossRef]

Bouwman, W. G.

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

Coquoz, O.

Cuppob, F.

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

Das, B. B.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Dasari, R. R.

de Mul, F. F. M.

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

den Mooter, G. V.

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

Dial, K. D.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
[CrossRef]

Dimofte, A.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[CrossRef]

Doak, J.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Fabiani, M.

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

Fantini, S.

A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[CrossRef]

Feld, M. S.

Finlay, J. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[CrossRef]

Ghosh, K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Goddeeris, C.

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

Gordon, B. A.

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

Gratton, G.

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

Gupta, R. K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Haskell, R. C.

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Hering, P.

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Huang, H.

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

Ishii, K.

K. Ishii and T. Iwai, “Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 47, 8397–8401 (2008).
[CrossRef]

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
[CrossRef]

H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
[CrossRef]

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interfereometer,” Opt. Lett. 30, 555–557(2005).
[CrossRef]

Iwai, T.

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

K. Ishii and T. Iwai, “Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 47, 8397–8401 (2008).
[CrossRef]

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interfereometer,” Opt. Lett. 30, 555–557(2005).
[CrossRef]

H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
[CrossRef]

Iwaii, T.

Kahol, P. K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Li, H.

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
[CrossRef]

Lin, X.

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

Liu, F.

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Madsen, J.

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Maikala, R. V.

R. V. Maikala, “Modified Beer’s Law-historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue,” Int. J. Ind. Ergon. 40, 125–134 (2010).
[CrossRef]

Manivannan, K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Mycek, M.

Osterholz, J.

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Petoukhova, A. L.

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

Rajan, V.

Redmond, H. E.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
[CrossRef]

Reynaers, H.

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

Sassaroli, A.

A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[CrossRef]

Schwarzmaier, H. J.

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Shen, J.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
[CrossRef]

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[CrossRef]

Steenbergen, W.

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence Interferometry,” Opt. Express 15, 9157–9165 (2007).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

Svaasand, L. O.

O. Coquoz, L. O. Svaasand, and B. J. Tromberg, “Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration,” Appl. Opt. 40, 6281–6291 (2001).
[CrossRef]

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Tadir, Y.

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Tao, S.

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

Terenji, A.

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Thompson, J. E.

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
[CrossRef]

Tromberg, B. J.

O. Coquoz, L. O. Svaasand, and B. J. Tromberg, “Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration,” Appl. Opt. 40, 6281–6291 (2001).
[CrossRef]

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Tse, C. Y.

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

Tsuchiya, Y.

Y. Tsuchiya and T. Urakami, “Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer–Lambert law,” Opt. Commun. 144, 269–280 (1997).
[CrossRef]

Urakami, T.

Y. Tsuchiya and T. Urakami, “Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer–Lambert law,” Opt. Commun. 144, 269–280 (1997).
[CrossRef]

van Leeuwen, T. G.

B. Varghese, V. Rajan, T. G. van Leeuwen, and W. Steenbergen, “Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence Interferometry,” Opt. Express 15, 9157–9165 (2007).
[CrossRef]

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

Varghese, B.

Vishwanath, K.

Wax, A.

Wei, Y.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
[CrossRef]

Willmann, S.

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Wyss, P.

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Xia, H.

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
[CrossRef]

H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
[CrossRef]

Xiao, Y.

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

Yang, B.

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

H. Xia, K. Ishii, T. Iwaii, H. Li, and B. Yang, “Dynamics of interacting Brownian particles in concentrated colloidal suspensions,” Appl. Opt. 47, 1257–1262 (2008).
[CrossRef]

Yang, C.

Yoshida, R.

Yu, H.

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
[CrossRef]

Zhu, T. C.

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[CrossRef]

Aeol. Res. (1)

H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: Theory, measurement and recent data,” Aeol. Res. 2, 5–26 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

S. Willmann, A. Terenji, J. Osterholz, H. J. Schwarzmaier, and P. Hering, “Absolute absorber quantification in turbid media at small source-detector separations,” Appl. Phys. B 74, 589–595 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. L. Petoukhova, W. Steenbergen, T. G. van Leeuwen, and F. F. M. de Mul, “Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime,” Appl. Phys. Lett. 81, 595–597 (2002).
[CrossRef]

Biol. Psychol. (1)

C. Y. Tse, B. A. Gordon, M. Fabiani, and G. Gratton, “Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults,” Biol. Psychol. 85, 79–89 (2010).
[CrossRef]

Int. J. Ind. Ergon. (1)

R. V. Maikala, “Modified Beer’s Law-historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue,” Int. J. Ind. Ergon. 40, 125–134 (2010).
[CrossRef]

Int. J. Pharm. (1)

C. Goddeeris, F. Cuppob, H. Reynaers, W. G. Bouwman, and G. V. den Mooter, “Light scattering measurements on microemulsions: Estimation of droplet sizes,” Int. J. Pharm. 312, 187–195 (2006).
[CrossRef]

J. Colloid Interface Sci. (1)

H. Xia, Y. Xiao, H. Huang, S. Tao, and X. Lin, “Particle sizing of colloidal suspensions by low-coherence fiber optic dynamic light scattering,” J. Colloid Interface Sci. 367, 527–530 (2012).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

H. Yu, J. Shen, and Y. Wei, “Geometrical optics approximation for light scattering by absorbing spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1178–1189 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Xia, K. Ishii, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 44, 6261–6264 (2005).
[CrossRef]

K. Ishii and T. Iwai, “Theoretical analysis of path-length-resolved power spectrum measurement using low-coherence dynamic light scattering,” Jpn. J. Appl. Phys. 47, 8397–8401 (2008).
[CrossRef]

Opt. Commun. (2)

Y. Tsuchiya and T. Urakami, “Quantitation of absorbing substances in turbid media such as human tissues based on the microscopic Beer–Lambert law,” Opt. Commun. 144, 269–280 (1997).
[CrossRef]

H. Xia, H. Li, B. Yang, K. Ishii, and T. Iwai, “Measurement of optical constants for dense media by low-coherence dynamic light scattering,” Opt. Commun. 281, 1331–1336 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. E (1)

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Phys. E 42, 1605–1609 (2010).
[CrossRef]

Phys. Med. Biol. (3)

A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[CrossRef]

A. Dimofte, J. C. Finlay, and T. C. Zhu, “A method for determination of the absorption and scattering properties interstitially in turbid media,” Phys. Med. Biol. 50, 2291–2311 (2005).
[CrossRef]

J. Madsen, P. Wyss, L. O. Svaasand, R. C. Haskell, Y. Tadir, and B. J. Tromberg, “Determination of the optical properties of the human uterus using frequency-domain photon migration and steady-state techniques,” Phys. Med. Biol. 39, 1191–1202 (1994).
[CrossRef]

Phys. Rev. E (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalized amplitude autocorrelation functions of light scattered from the volume fraction ϕs=0.1 polystyrene suspensions of particles with a given radius of 550 nm, as various ϕa=0, 0.05, 0.10, 0.15, 0.20 and 0.25 black inks are added, respectively.

Fig. 2.
Fig. 2.

The estimated scattering and reduced scattering coefficients with various volume fractions ϕa of the black ink added into ϕs=0.1 polystyrene suspensions of particles with the given radius of 550 nm. For the given radius of 550 nm, the scattering and the reduced scattering coefficients computed by the Mie scattering theory are 71.0mm1 and 9.119mm1, which are represented by the solid and the dash lines, respectively.

Fig. 3.
Fig. 3.

Absorption-induced path-length resolved intensity distributions of the backscattered light with various ϕa=0, 0.05, 0.10, 0.15, 0.20, and 0.25 black inks added into the medium. The medium is ϕs=0.1 polystyrene suspensions of particles with the given radius of 550 nm. The abscissa shows the normalized path-length by TMFP.

Fig. 4.
Fig. 4.

Ratios of the path-length resolved intensity distributions. The dotted lines represent the linear fitting for ϕa=0.05, 0.10, 0.15, 0.20, and 0.25 black inks, respectively. From the slopes of the lines, the respective absorption coefficients are obtained as μa=0.40, 0.65, 1.00, 1.46, and 1.83mm1, respectively.

Fig. 5.
Fig. 5.

Comparison between the absorption coefficients measured by the low coherence FODLS and the spectrophotometer (UV-Vis spectrophotometer TU-1800PC). The error bar shows the standard deviation of the linear fitting to the experimental data.

Fig. 6.
Fig. 6.

Relative absorptivities as a function of the volume filling fraction of the scatterers (symbols for mean and standard error; solid line for mean; dotted line for standard deviation).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ(τ)=exp(q2Deffτ),
Deff=(1ϕ)3(1ϕ/2)S(q)D0,
μs=14πd2ρsks,
h(μs,μa,t)=h(μs,μa=0,t)exp(μaνt),
Id(μs,μa)=0h(μs,μa,t)dt.
μalnI(μs,μa)=0νtP(μs,μa,t)dt0P(μs,μa,t)dt=vt,
lnId(μs,μa)=μa<MP>+lnId(μa=0).
2ldμa=ln[Ilatex+ink(2ld)/Ilatex(2ld)],

Metrics