Abstract

Based on resonant and waveguiding properties of optical microfiber loops, we theoretically investigated silica microfiber loop resonators (MLRs) for refractive index (RI) and salinity sensing of seawater. Dependences of sensitivity and detection limit on probing wavelength, fiber diameter, and ring diameter are calculated with typical parameters of seawater. Our results show that the sensitivity of MLRs increases with the increasing wavelength and the decreasing diameter of the microfiber. Bending loss and absorption loss are both important factors to determine the detection limit. By optimizing the parameters of the sensing system, RI sensitivity and salinity detection limit can reach 106 RI units (RIU) and 102 (10 ppm), respectively. The model presented here may be helpful for developing microscale fiber sensors for seawater detection with high sensitivity, low detection limit, and miniaturized sizes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).
  2. O. Esteban, M. Cruz-Navarrete, A. Gonzalez-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999).
    [CrossRef]
  3. J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
    [CrossRef]
  4. B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
    [CrossRef]
  5. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
    [CrossRef]
  6. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
    [CrossRef]
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  8. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005).
    [CrossRef]
  9. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
    [CrossRef]
  10. X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  11. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  12. L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
    [CrossRef]
  13. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).
    [CrossRef]
  14. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
    [CrossRef]
  15. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
    [CrossRef]
  16. G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
    [CrossRef]
  17. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  18. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef]
  19. X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
    [CrossRef]
  20. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef]
  21. L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef]
  22. X. H. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [CrossRef]
  23. L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
    [CrossRef]
  24. C. Wu, B. O. Guan, C. Lu, and H. Y. Tam, “Salinity sensor based on polyimide-coated photonic crystal fiber,” Opt. Express 19, 20003–20008 (2011).
    [CrossRef]
  25. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1991).
  27. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowire: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
    [CrossRef]
  28. L. H. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef]
  29. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

2011

2008

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef]

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef]

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
[CrossRef]

2007

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef]

2006

2005

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005).
[CrossRef]

2004

2003

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

2002

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

1999

1995

X. H. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
[CrossRef]

G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).

1993

Ashcom, J. B.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Bernabeu, E.

Birks, T. A.

Brambilla, G.

Chao, C. Y.

Chen, K. S.

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

Chen, Q. Y.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
[CrossRef]

Chen, X. F.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

Chylek, P.

Cong, J.

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

Cruz-Navarrete, M.

DiGiovanni, D. J.

Dulashko, Y.

Esteban, O.

Fan, X.

Fan, X. D.

Finazzi, V.

Fini, J. M.

Fry, E. S.

Gattas, R. R.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Gonzalez-Cano, A.

Grelu, P.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

Guan, B. O.

Guo, L. J.

Guo, X.

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Hale, A.

He, S. L.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Horak, P.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Kou, L. H.

Labrie, D.

Lagerloef, G. S. E.

G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).

Leon-Saval, S. G.

LeVine, D. M.

G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).

Li, Y. H.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

Liu, Y. T.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

Lou, J. Y.

Lou, L. Y.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1991).

Lu, C.

Lu, P.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
[CrossRef]

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Men, L. Q.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
[CrossRef]

Morel, A.

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

Pan, X. Y.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

Peng, B. J.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

Pruneri, V.

Quan, X. H.

Russell, P. St. J.

Schwelb, O.

Shen, M. Y.

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Shi, L.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1991).

Sumetsky, M.

Swift, C. T.

G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).

Tam, H. Y.

Tan, W.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

Tong, L. M.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Vienne, G.

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Wadsworth, W. J.

Wang, H.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

White, I. M.

Windeler, R. S.

Wu, C.

Xu, F.

Xu, J.

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

Xu, Y. H.

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

Ying, C. F.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

Zhang, X. M.

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

Zhao, Y.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, and X. Guo, “Demonstration of microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

J. Appl. Phys.

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103, 053107 (2008).
[CrossRef]

J. Lightwave Technol.

Nature

L. M. Tong, R. R. Gattas, J. B. Ashcom, S. L. He, L. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-los optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef]

Oceanogr. Mar. Biol.

G. S. E. Lagerloef, C. T. Swift, and D. M. LeVine, “Sea surface salinity: the next remote sensing challenge,” Oceanogr. Mar. Biol. 8, 44–50 (1995).

Opt. Acta

G. Vienne, P. Grelu, X. Y. Pan, Y. H. Li, and L. M. Tong, “Theoretical study of microfiber resonator devices exploiting a phase shift,” Opt. Acta 10, 025303 (2008).
[CrossRef]

Opt. Express

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowire: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13, 4331–4340 (2005).
[CrossRef]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength- diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef]

M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef]

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef]

C. Wu, B. O. Guan, C. Lu, and H. Y. Tam, “Salinity sensor based on polyimide-coated photonic crystal fiber,” Opt. Express 19, 20003–20008 (2011).
[CrossRef]

Opt. Laser Technol.

B. J. Peng, Y. Zhao, C. F. Ying, Y. T. Liu, and H. Wang, “Novel optical sensor for simultaneous measurement of liquid concentration and temperature,” Opt. Laser Technol. 39, 105–109 (2007).
[CrossRef]

Sens. Actuators B

J. Cong, X. M. Zhang, K. S. Chen, and J. Xu, “Fiber optic Bragg grating sensor based on hydrogels for measuring salinity,” Sens. Actuators B 87, 487–490 (2002).
[CrossRef]

Sensors

L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonator for ambient refractive index sensing,” Sensors 7, 689–696 (2007).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1991).

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of an MLR with diameter of D immersed in seawater.

Fig. 2.
Fig. 2.

Sensitivity of the MLR for (a) RI sensing and (b) salinity sensing as a function of the fiber diameter d with wavelengths of 660, 1064, 1310, and 1550 nm, respectively.

Fig. 3.
Fig. 3.

(a) Evolution and competition of guiding loss, bending loss, and absorption loss. (b) Detection limit Pn dependence on D for considering entire loss, only guiding loss and absorption loss, only guiding loss and bending loss, and only guiding loss. The probing wavelength is 1550 nm, and fiber diameter is 1400 nm.

Fig. 4.
Fig. 4.

Detection limit Pn dependence on D with typical wavelengths of (a) 1064, 1150, 1310, 1400, 1450, and 1550 nm; and (b) 660, 700, 800, 900, and 1000 nm. The fiber diameters used in (a) and (b) are 1400 and 800 nm, respectively.

Fig. 5.
Fig. 5.

Detection limit Pn dependence on d with typical wavelengths of (a) 1064 nm and (b) 1550 nm. Ring diameters are 400, 600, 800, 1200, 1600, and 2000 μm, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T=PoutPin=|Eout2||Ein2|=a2K+σ22σKsinφ1+σ2K2σKsinφ,
Sn=λn,
Ss=λS,
Sn=ηλneff,
Pn=ΔλSn=λSnQ,
Ps=ΔλSs=λSsQ,
Q=λΔλDπ2neff(σK)1/2λ(1σK)[a2(Kσ)2(2a21)(1σK)2a2(Kσ)2(1σK)2]1/2,
n(S,T,λ)=1.31405+(1.779×1041.05×106T+1.6×108T2)S2.02×106T2+15.868+0.01155S0.00423Tλ4382λ2+1.1455×106λ3,
Ss=λS=λn·nS=SnnS,
Ps=ΔλSs=λSnnSQ=PnnS.
γbend=U(λ0)22V(λ0)2W(λ0)3/2K12[W(λ0)](πrR)1/2exp(4W(λ0)33V(λ0)2RrΔ),
αbend=10log10[exp(γbend·L)]/L,

Metrics