Abstract

The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in converting the HICO raw digital numbers to calibrated radiances. The spectral calibration is based on matching atmospheric water vapor and oxygen absorption bands and extraterrestrial solar lines. The radiometric calibration is based on comparisons between HICO and the EOS/MODIS data measured over homogeneous desert areas and on spectral reflectance properties of coral reefs and water clouds. Improvements to the present vicarious calibration techniques are possible as we gain more in-depth understanding of the HICO laboratory calibration data and the ISS HICO data in the future.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Lucke, M. Corson, N. R. McGlothlin, S. D. Butcher, D. L. Wood, D. R. Korwan, R. R. Li, W. A. Snyder, C. O. Davis, and D. T. Chen “The hyperspectral imager for the coastal ocean: instrument description and first images,” Appl. Opt. 50, 1501–1516 (2011).
    [CrossRef]
  2. M. R. Corson and C. O. Davis, “A new view of coastal oceans from the space station,” EOS 92, 161–168 (2011).
    [CrossRef]
  3. B. Franz, S. Bailey, P. Werdell, and C. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
    [CrossRef]
  4. Etaloning in back illuminated CCDs, Technical Note, Roper Scientific, Inc. (2000), available online at http://www.princetoninstruments.com/Uploads/Princeton/Documents/Whitepapers/etaloning.pdf .
  5. Y. S. Chang and J. H. Shaw, “A nonlinear least squares method of determining line intensities and half-widths,” Appl. Spectroscopy 31, 213–220 (1977).
    [CrossRef]
  6. B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Rem. Sens. Environ. 90, 424–433 (2004).
    [CrossRef]
  7. R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
    [CrossRef]
  8. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  9. D. M. Wieliczka, S.-S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
    [CrossRef]
  10. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000).
    [CrossRef]
  11. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
    [CrossRef]
  12. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
    [CrossRef]
  13. E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
    [CrossRef]
  14. P. Stamnes, W. H. Knap, R. B. A. Koelemeijer, and N. A. J. Schutgens, “Radiation and cloud studies with GOME in preparation for future spectrometer missions,” (2007), available online from http://earth.esa.int/pub/ESA_DOC/gothenburg/111stamm.pdf .
  15. M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
    [CrossRef]

2012 (1)

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

2011 (2)

2007 (1)

2004 (1)

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Rem. Sens. Environ. 90, 424–433 (2004).
[CrossRef]

2000 (1)

1998 (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

1997 (2)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

1992 (1)

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

1989 (2)

D. M. Wieliczka, S.-S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
[CrossRef]

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

1977 (1)

Y. S. Chang and J. H. Shaw, “A nonlinear least squares method of determining line intensities and half-widths,” Appl. Spectroscopy 31, 213–220 (1977).
[CrossRef]

Ahmad, Z.

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Bailey, S.

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

Broenkow, W. W.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Butcher, S. D.

Chang, Y. S.

Y. S. Chang and J. H. Shaw, “A nonlinear least squares method of determining line intensities and half-widths,” Appl. Spectroscopy 31, 213–220 (1977).
[CrossRef]

Chen, D. T.

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Clark, D. K.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Corson, M.

Corson, M. R.

M. R. Corson and C. O. Davis, “A new view of coastal oceans from the space station,” EOS 92, 161–168 (2011).
[CrossRef]

Davis, C. O.

Deuzé, J. L.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Franz, B.

Gao, B.-C.

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Rem. Sens. Environ. 90, 424–433 (2004).
[CrossRef]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000).
[CrossRef]

Ge, Y.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Gordon, H. R.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Herman, M.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

Kaufman, Y. J.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

King, M. D.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

Korwan, D

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

Korwan, D. R.

Li, R. R.

Li, R.-R.

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

Lucke, R.

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

Lucke, R. L.

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

McClain, C.

McGlothlin, N. R.

Menzel, W. P.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

Montes, M. J.

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Rem. Sens. Environ. 90, 424–433 (2004).
[CrossRef]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887–896 (2000).
[CrossRef]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

Morcrette, J. J.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Querry, M. R.

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Shaw, J. H.

Y. S. Chang and J. H. Shaw, “A nonlinear least squares method of determining line intensities and half-widths,” Appl. Spectroscopy 31, 213–220 (1977).
[CrossRef]

Snyder, W. A.

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Tanre, D.

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

Tanré, D.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

Trees, C.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Vermote, E. F.

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

Voss, K. J.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Weng, S.-S.

Werdell, P.

Wieliczka, D. M.

Wood, D. L.

Appl. Opt. (4)

Appl. Spectroscopy (1)

Y. S. Chang and J. H. Shaw, “A nonlinear least squares method of determining line intensities and half-widths,” Appl. Spectroscopy 31, 213–220 (1977).
[CrossRef]

EOS (1)

M. R. Corson and C. O. Davis, “A new view of coastal oceans from the space station,” EOS 92, 161–168 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (4)

R.-R. Li, R. Lucke, D Korwan, and B.-C. Gao, “A technique for removing second-order light effects from hyperspectral imaging data,” IEEE Trans. Geosci. Remote Sens. 50, 824–830 (2012).
[CrossRef]

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: Advanced facility instrument for studies of the earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).
[CrossRef]

E. F. Vermote, D. Tanré, J. L. Deuzé, M. Herman, and J. J. Morcrette, “Second simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE Trans. Geosci. Remote Sens. 35675–686 (1997).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27(1992).
[CrossRef]

J. Geophys. Res. (1)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[CrossRef]

Rem. Sens. Environ. (2)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, and M. R. Olah“Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Rem. Sens. Environ. 65, 227–248 (1998).
[CrossRef]

B.-C. Gao, M. J. Montes, and C. O. Davis, “Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique,” Rem. Sens. Environ. 90, 424–433 (2004).
[CrossRef]

Other (2)

Etaloning in back illuminated CCDs, Technical Note, Roper Scientific, Inc. (2000), available online at http://www.princetoninstruments.com/Uploads/Princeton/Documents/Whitepapers/etaloning.pdf .

P. Stamnes, W. H. Knap, R. B. A. Koelemeijer, and N. A. J. Schutgens, “Radiation and cloud studies with GOME in preparation for future spectrometer missions,” (2007), available online from http://earth.esa.int/pub/ESA_DOC/gothenburg/111stamm.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Sample HICO Level 1A spectrum in digital numbers acquired in the normal data collection mode. (b) Similar to (a) except that the data were collected in the special high-spectral resolution mode. The atmospheric water vapor bands, centered near 0.725, 0.825, and 0.94 μm, the oxygen band near 0.765 μm, and a solar line near 0.430 μm, were observed in both spectra.

Fig. 2.
Fig. 2.

(a) Example of ISS HICO spectrum (solid line) covering the 0.765 μm oxygen band absorption region based on the wavelength table obtained from the prelaunch laboratory calibrations and a theoretically simulated atmospheric gas transmittance spectrum (dotted line). (b) Similar spectrum matching but with the wavelengths of the measured HICO spectrum being shifted by 1.72 nm to the right. (c) Sum of squared differences between the measured and fitted spectra as a function of wavelength shift. The minimum occurs for a wavelength shift of 1.7nm.

Fig. 3.
Fig. 3.

(a) HICO wavelength shifts in the cross-track direction from four sets of HICO data acquired on September 25, 2009; December 19, 2009; February 4, 2010; and September 8, 2011. (b) Wavelength shift as a function of day number (from September 25, 2009) for a spatial pixel located at the center of the HICO focal plane array.

Fig. 4.
Fig. 4.

Sum of squared differences between the measured and fitted spectra as a function of FWHM. The minimum occurs at a FWHM of 5.1 nm.

Fig. 5.
Fig. 5.

True color image (a) over the Philippine Sea on October 26, 2009, with features under shallow waters, the corresponding 1.0 μm single channel image before (b) and after (c) the second-order light corrections.

Fig. 6.
Fig. 6.

HICO image (a) and a MODIS image (b) acquired on November 21, 2009, over an area in the Taklamakan Desert; average radiance curves (c) for HICO data and MODIS data over the marked red rectangular areas in (a) and (b).

Fig. 7.
Fig. 7.

(a) HICO true color image acquired over an area around the Midway Island in the Pacific ocean on October 20, 2009. (b) HICO apparent reflectance spectrum (solid line) for a cloud pixel and the corresponding simulated cloud apparent reflectance spectrum (dashed line). (c) Mean (dashed line) of ratio spectra (simulated data over HICO data) and the derived scaling curve (solid line).

Fig. 8.
Fig. 8.

(a) HICO true color image acquired over the mouth of Chesapeake Bay on October 7, 2009; (b) Unsmoothed radiance spectrum (red line) of a sandy pixel and the corresponding smoothed spectrum (black line) of the same pixel.

Fig. 9.
Fig. 9.

(a) HICO true color image acquired over Hong Kong and nearby water areas on October 2, 2009. (b) Sample Level 1B radiance spectra [50W/(m2srμm)] over case 2 water, green vegetation, and cloud.

Fig. 10.
Fig. 10.

HICO true color image (a) acquired over the mouth of Yangtze River in Eastern China on January 18, 2010, the corresponding Aqua MODIS true color image (b) acquired 20 minutes later on the same day, and comparisons between HICO and MODIS data acquired over clear waters (c), fairly turbid waters (d), and very turbid waters (e).

Fig. 11.
Fig. 11.

HICO true color image (a) acquired over Lake Eyre, Australia on May 11, 2010, the corresponding Terra MODIS true color image (b) acquired less than 1 hour earlier on the same day, and comparisons between HICO and MODIS data acquired over Area 1, 2, and 3, as marked in (a) and (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S(λ)f(λ)*S(λ/2)=D(λ)f(λ)*D(λ/2),
f(λ)=[S(λ)D(λ)]/[S(λ/2)D(λ/2)].
C(λ)=A(λ)f(λ)*A(λ/2).
ρ*=πL/(μ0E0),

Metrics