Abstract

The light of a light-emitting diode or a common thermal source, such as a tungsten filament lamp, is known to be quasi-incoherent. We generated partially coherent light of these sources with a volume of coherence in the micrometer range of 5100μm3 by spatial and spectral filtering. The corresponding degree of partial coherence was adapted for microscopic interference setups, such as a digital in-line holographic microscope. The practicability of the sources was determined by the spectral emittance and the resulting signal-to-noise ratio (SNR) of the detector. The microscale coherence in correlation with the SNR and its resolution for microscopy were analyzed. We demonstrate how low-light-level, non-laser sources enable holographic imaging with a video frame rate (25frames/s), an intermediate SNR of 8 dB, and a volume of coherence of 3.4×104μm3. Holograms of objects with a lateral resolution of 1 μm were achieved using a microscope lens (50×/NA=0.7) and a CCD camera featuring a 4–12 bit dynamic range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  2. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  3. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
    [CrossRef]
  4. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004).
    [CrossRef]
  5. G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
    [CrossRef]
  6. P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.
  7. L. Repetto, E. Piona, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [CrossRef]
  8. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  9. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
    [CrossRef]
  10. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008).
    [CrossRef]
  11. P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
    [CrossRef]
  12. J. Popp, V. V. Tuchin, A. Chiou, and S. Heinemann, eds., Handbook of Biophotonics, Vol. 1: Basics and Techniques (Wiley-VCH, 2011).
  13. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011).
  14. P. S. Idell and A. Webster, “Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain,” J. Opt. Soc. Am. A 9, 43–56 (1992).
    [CrossRef]
  15. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45, 7667–7673(2006).
    [CrossRef]
  16. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
    [CrossRef]
  17. M. Marim, E. Angelini, J.-C. Olivo-Marin, and M. Atlan, “Off-axis compressed holographic microscopy in low-light conditions,” Opt. Lett. 36, 79–81 (2011).
    [CrossRef]
  18. N. Pandey and B. Hennelly, “Quantization noise and its reduction in lensless Fourier digital holography,” Appl. Opt. 50, B58–B70 (2011).
    [CrossRef]
  19. G. A. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44, 1216–1225(2005).
    [CrossRef]
  20. A. M. S. Maallo, P. F. Almoro, and S. G. Hanson, “Quantization analysis of speckle intensity measurements for phase retrieval,” Appl. Opt. 49, 5087–5094 (2010).
    [CrossRef]
  21. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
    [CrossRef]
  22. T. Meinecke, N. Sabitov, and S. Sinzinger, “Information extraction from digital holograms for particle flow analysis,” Appl. Opt. 49, 2446–2455 (2010).
    [CrossRef]
  23. S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
    [CrossRef]
  24. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
    [CrossRef]
  25. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
    [CrossRef]
  26. N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
    [CrossRef]
  27. A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109, 604–615 (1934).
    [CrossRef]
  28. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934).
    [CrossRef]
  29. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938).
    [CrossRef]
  30. P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
    [CrossRef]
  31. P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
    [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics7th ed., (Cambridge University, 2006).
  33. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
    [CrossRef]
  34. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191(2010).
    [CrossRef]
  35. Carl Zeiss MicroImaging GmbH, “AxioCam MRm data sheet,” www.zeiss.de (2011).
  36. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

2012 (2)

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

2011 (4)

2010 (6)

T. Meinecke, N. Sabitov, and S. Sinzinger, “Information extraction from digital holograms for particle flow analysis,” Appl. Opt. 49, 2446–2455 (2010).
[CrossRef]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191(2010).
[CrossRef]

A. M. S. Maallo, P. F. Almoro, and S. G. Hanson, “Quantization analysis of speckle intensity measurements for phase retrieval,” Appl. Opt. 49, 5087–5094 (2010).
[CrossRef]

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
[CrossRef]

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

2009 (1)

2008 (3)

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008).
[CrossRef]

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

2004 (2)

2001 (1)

G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

1999 (1)

1992 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

1938 (1)

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938).
[CrossRef]

1934 (2)

A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109, 604–615 (1934).
[CrossRef]

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934).
[CrossRef]

1930 (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[CrossRef]

Almoro, P. F.

Angelini, E.

Atlan, M.

Bishara, W.

Born, M.

M. Born and E. Wolf, Principles of Optics7th ed., (Cambridge University, 2006).

Brady, D. J.

Charrière, F.

Choi, K.

Colomb, T.

Coskun, A. F.

Cuche, E.

Depeursinge, C.

Dubois, F.

Dumas, E. M.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gopinathan, U.

Gross, M.

Grunze, M.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Hahn, J.

Hanson, S. G.

Haraszti, T.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Hennelly, B.

Heydt, M.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Horisaki, R.

Hübner, U.

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

Idell, P. S.

Isikman, S. O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Istasse, E.

Jericho, M. H.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Jericho, S. K.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Joannes, L.

Kanka, M.

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
[CrossRef]

P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.

Kemper, B.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Khintchine, A.

A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109, 604–615 (1934).
[CrossRef]

Klages, P.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Kowarschik, R.

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
[CrossRef]

P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.

Kreuzer, H. J.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Langehanenberg, P.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Legros, J.-C.

Lim, S.

Maallo, A. M. S.

Maier, T.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Marim, M.

Marquet, P.

Meinecke, T.

Mills, G. A.

Minetti, C.

Monnom, O.

Montfort, F.

Mudanyali, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Nadeau, J.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Olivo-Marin, J.-C.

Osten, W.

Ozcan, A.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191(2010).
[CrossRef]

Oztoprak, C.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Pandey, N.

Pedrini, G.

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459–2466 (2008).
[CrossRef]

G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

Petruck, P.

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
[CrossRef]

P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.

Piona, E.

Pontiggia, C.

Remmersmann, C.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Repetto, L.

Requena, M. L. N.

Riesenberg, R.

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
[CrossRef]

M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009).
[CrossRef]

P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.

Rosenhahn, A.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Sabitov, N.

Schulz, S.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Sencan, I.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Shedin, S.

G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

Sinzinger, S.

Spatz, J. P.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Stürwald, S.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Su, T.-W.

Tseng, D.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

van Cittert, P. H.

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934).
[CrossRef]

von Bally, G.

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Webster, A.

Weisse, S.

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Wiener, N.

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics7th ed., (Cambridge University, 2006).

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

Yaglidere, O.

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Yamaguchi, I.

Zernike, F.

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938).
[CrossRef]

Acta Math. (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. B (1)

P. Petruck, R. Riesenberg, and R. Kowarschik, “Optimized coherence parameters for high-resolution holographic microscopy,” Appl. Phys. B 106, 339–348 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

Lab Chip (1)

D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip 10, 1787–1792 (2010).
[CrossRef]

Math. Ann. (1)

A. Khintchine, “Korrelationstheorie der stationären stochastischen Prozesse,” Math. Ann. 109, 604–615 (1934).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Commun. (1)

P. Petruck, R. Riesenberg, U. Hübner, and R. Kowarschik, “Spatial coherence on micrometer scale measured by a nanohole array,” Opt. Commun. 285, 389–392 (2012).
[CrossRef]

Opt. Express (2)

Opt. Laser Eng. (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser Eng. 46, 499–507 (2008).
[CrossRef]

Opt. Lett. (4)

Optik (2)

G. Pedrini and S. Shedin, “Short coherence digital holography for 3D microscopy,” Optik 112, 427–432 (2001).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

S. Weisse, M. Heydt, T. Maier, S. Schulz, J. P. Spatz, M. Grunze, T. Haraszti, and A. Rosenhahn, “Flow conditions in the vicinity of microstructured interfaces studies by holography and implications for the assembly of artificial actin networks,” Phys. Chem. Chem. Phys. 13, 13395–13402 (2011).
[CrossRef]

Physica (2)

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene,” Physica 1, 201–210 (1934).
[CrossRef]

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5, 785–795 (1938).
[CrossRef]

Planet. Space Sci. (1)

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58, 701–705 (2010).
[CrossRef]

Tech. Mess. (1)

P. Petruck, R. Riesenberg, and R. Kowarschik, “Sensitive measurement of partial coherence using a pinhole array,” Tech. Mess. 77, 473–478 (2010).
[CrossRef]

Other (6)

M. Born and E. Wolf, Principles of Optics7th ed., (Cambridge University, 2006).

Carl Zeiss MicroImaging GmbH, “AxioCam MRm data sheet,” www.zeiss.de (2011).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

J. Popp, V. V. Tuchin, A. Chiou, and S. Heinemann, eds., Handbook of Biophotonics, Vol. 1: Basics and Techniques (Wiley-VCH, 2011).

P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011).

P. Petruck, R. Riesenberg, M. Kanka, and R. Kowarschik, “Speckle-free holographic microscopy,” in Digital Holography and Three-Dimensional ImagingOSA Technical Digest Series (Optical Society of America, 2010), paper DMB6.

Supplementary Material (4)

» Media 1: MOV (3985 KB)     
» Media 2: MOV (3983 KB)     
» Media 3: MOV (4020 KB)     
» Media 4: MOV (4038 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of a digital in-line holographic microscope setup with partially coherent illumination. It can be divided into different parts: (a) the filtered light source, (b) the object, and (c) the detector. For the optimization of all components, the resulting SNR is a key factor that should be characterized.

Fig. 2.
Fig. 2.

Irradiance at the object plane in dependence on the volume of coherence and for different light sources. The irradiance decreases for increasing volumes of coherence, which are generated by increased spatial or temporal filtering. Here, the mercury arc lamp delivers the highest irradiance at a fixed volume of coherence while the tungsten filament lamp delivers the lowest. The used LED is located in between, close to the tungsten filament lamp. These differences are based on the different processes of light generation and emittance.

Fig. 3.
Fig. 3.

Noise characteristic of the sensor (AxioCam MRm). A part of the dark frame (32×32 pixels) is shown on the left. The histogram for a whole dark frame (1024×1024 pixels) is presented on the right. For this example, the exposure time was set to 1 s, and an internal dark current correction was used. A mean value of 8.3 digital counts (dc) and a standard deviation of 2.4 dc are determined, which can be assumed to be offset and half of the noise level.

Fig. 4.
Fig. 4.

SNRdetector and SNRphoton of the light source. For 10–100 detected photons/pixel, both noise levels are similar. For more detected photons (>100photons/pixel), the photon noise becomes dominant and thus its SNR is lower.

Fig. 5.
Fig. 5.

Resulting SNR of the SNRholo and its SNRrec in dependence on the detected energy per area. The volume of coherence is adjusted toVc=3.4×104μm3 for a filtered LED light source (irradiance of 0.112W/m2 at the object plane), and the exposure time is varied. The SNRrec within the reconstructed object plane is approximately two times higher (3 dB) due to the refocused object contrast compared with the contrast within the recorded hologram and the band-limited wave propagation.

Fig. 6.
Fig. 6.

Example images (detail of 128×128 pixels, normalized intensity) of the reconstructed object (cluster of 1.06 μm PMMA beads) for different exposure times. For longer exposure times, more photons per pixel are recorded, and thus the SNR in the hologram as well as in the reconstruction is increased (compare with Fig. 5).

Fig. 7.
Fig. 7.

Single-frame excerpts from in-line holographic microscopy video recordings with partially coherent LED illumination and reconstructed intensity images. (a) 512×512 pixel hologram recorded with 25.3frames/s(fps) (Media 1). (b) Reconstructed intensity image (Media 2). (c) Similar scene, but with 1024×1024 pixels, recorded with 14.2 fps (Media 3). (d) Respective reconstructed intensity image (Media 4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Vc=π4Dc2Lc.
Lc=(2ln2π)λ2Δλ,
Dc=0.71λzd,
SNR=(ImaxImin)Imax+2σ,

Metrics