Abstract

The objective of the present work is to identify differences in elemental fingernail composition between opium-addicted and healthy adult human subjects using laser-induced breakdown spectroscopy. Thirty nails from normal, healthy male subjects and 30 nails from opium-addicted male individuals were analyzed. Measurements on 60 nail samples were carried out, identifying 13 key species including 11 neutral elements and 2 ions. Discriminant Function Analysis (DFA) was used to classify the samples between the two groups. Spectral line intensities of elements including Fe, C, Ti, Mg, Si, Al, Ca, H, K, O, and Na were considered variables in DFA. This analysis demonstrates the efficient discrimination between the two groups. However, the number of samples in this work is not sufficient for a decisive conclusion and further research is needed to generalize this idea.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
    [CrossRef]
  2. M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
    [CrossRef]
  3. S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
    [CrossRef]
  4. S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
    [CrossRef]
  5. R. Mehra and M. Juneja, “Elements in scalp, hair, and nails indicating metal burden in polluted environment,” J. Sci. Ind. Res. 64, 119–124 (2005).
  6. M. J. Slotnick and J. O. Nriagu, “Validity of human nails as a biomarker of arsenic and selenium exposure: A review” Environ. Res. 102, 125–139 (2006).
    [CrossRef]
  7. H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
    [CrossRef]
  8. Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser induced breakdown spectroscopy,” J. Biomed. Opt. 16, 057002 (2011).
    [CrossRef]
  9. A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
    [CrossRef]
  10. E. Kiyohide and I. Koichi, “Element concentrations in private nail (II),” in Annual Report of the Tokyo Metropolitan Research Laboratory of Public Health (2001), Vol. 52, pp. 189–193.
  11. C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
    [CrossRef]
  12. S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
    [CrossRef]
  13. S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
    [CrossRef]
  14. A. Kumar and P. C. Sharma, “Uses of LIBS technology in biological media,” Proc. SPIE 6377, 637701 (2006).
    [CrossRef]
  15. N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
    [CrossRef]
  16. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 1st ed. (Wiley, 2006).
  17. S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
    [CrossRef]
  18. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42, 2835–2842 (2003).
    [CrossRef]
  19. W. W. Harrison and G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clin. Chim. Acta 36, 485–492 (1972).
    [CrossRef]
  20. P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).
  21. R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
    [CrossRef]

2011

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser induced breakdown spectroscopy,” J. Biomed. Opt. 16, 057002 (2011).
[CrossRef]

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

2009

S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

2008

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

2007

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
[CrossRef]

2006

A. Kumar and P. C. Sharma, “Uses of LIBS technology in biological media,” Proc. SPIE 6377, 637701 (2006).
[CrossRef]

M. J. Slotnick and J. O. Nriagu, “Validity of human nails as a biomarker of arsenic and selenium exposure: A review” Environ. Res. 102, 125–139 (2006).
[CrossRef]

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

2005

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

R. Mehra and M. Juneja, “Elements in scalp, hair, and nails indicating metal burden in polluted environment,” J. Sci. Ind. Res. 64, 119–124 (2005).

2003

1995

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
[CrossRef]

1994

R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
[CrossRef]

1990

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

1989

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

1984

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

1981

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

1972

W. W. Harrison and G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clin. Chim. Acta 36, 485–492 (1972).
[CrossRef]

Ajose, O. A.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Allen, D. D.

R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
[CrossRef]

Assar, R.

T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
[CrossRef]

Bank, H. L.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Baptista, G. B.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Bar, I.

Barros Leite, C. V.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Ben Lakhdar, Z.

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

Bigelow, J. B.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Bode, P.

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

Buoso, M. C.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Campos, S. V.

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

Cantero-Hinojosa, J.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Ceccato, D.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Clemena, G. G.

W. W. Harrison and G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clin. Chim. Acta 36, 485–492 (1972).
[CrossRef]

Collette, H. J. A.

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

Connolly, D.

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 1st ed. (Wiley, 2006).

Crutzmacher, P.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

De Poli, M.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Diedrich, J.

S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
[CrossRef]

Ding, H.

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Ehmer, B.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

Elnimer, T.

T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
[CrossRef]

Extremera, B. G.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Hamzaoui, S.

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

Harrison, W. W.

W. W. Harrison and G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clin. Chim. Acta 36, 485–492 (1972).
[CrossRef]

Hashem, A.

T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
[CrossRef]

Hosseinimakarem, Z.

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser induced breakdown spectroscopy,” J. Biomed. Opt. 16, 057002 (2011).
[CrossRef]

Issler, P. F.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Jaidane, N.

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

Jeyasingham, N.

S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Juneja, M.

R. Mehra and M. Juneja, “Elements in scalp, hair, and nails indicating metal burden in polluted environment,” J. Sci. Ind. Res. 64, 119–124 (2005).

Kantor, R.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Khleifia, R.

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

Kiyohide, E.

E. Kiyohide and I. Koichi, “Element concentrations in private nail (II),” in Annual Report of the Tokyo Metropolitan Research Laboratory of Public Health (2001), Vol. 52, pp. 189–193.

Koichi, I.

E. Kiyohide and I. Koichi, “Element concentrations in private nail (II),” in Annual Report of the Tokyo Metropolitan Research Laboratory of Public Health (2001), Vol. 52, pp. 189–193.

Kulbe, K. D.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

Kumar, A.

A. Kumar and P. C. Sharma, “Uses of LIBS technology in biological media,” Proc. SPIE 6377, 637701 (2006).
[CrossRef]

Lerner, Y. B.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Makinde, N. O.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Marcano, O. A.

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Martin, A. M.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Martinez, M. R.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Mauricio, G. M.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Mehra, R.

R. Mehra and M. Juneja, “Elements in scalp, hair, and nails indicating metal burden in polluted environment,” J. Sci. Ind. Res. 64, 119–124 (2005).

Melikechi, N.

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Messinger, D.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

Meyer, J. J.

R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
[CrossRef]

Moreau, R. L. M.

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

Moreno-Abadia, V.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Morrison, J.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Moschini, G.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Nriagu, J. O.

M. J. Slotnick and J. O. Nriagu, “Validity of human nails as a biomarker of arsenic and selenium exposure: A review” Environ. Res. 102, 125–139 (2006).
[CrossRef]

Olabanji, S. O.

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

Palchaudhuri, S.

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
[CrossRef]

Paschoa, A. S.

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Portnov, A.

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 1st ed. (Wiley, 2006).

Rehse, S. J.

S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
[CrossRef]

Rock, S.

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Rosenwaks, S.

Roson, J.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Scigalla, P.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

Sharma, P. C.

A. Kumar and P. C. Sharma, “Uses of LIBS technology in biological media,” Proc. SPIE 6377, 637701 (2006).
[CrossRef]

Silva, O. A.

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

Slotnick, M. J.

M. J. Slotnick and J. O. Nriagu, “Validity of human nails as a biomarker of arsenic and selenium exposure: A review” Environ. Res. 102, 125–139 (2006).
[CrossRef]

Spell, L. H.

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

Tavassoli, S. H.

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser induced breakdown spectroscopy,” J. Biomed. Opt. 16, 057002 (2011).
[CrossRef]

Trouerbach, W. Th.

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

Vecht-Hart, C. M.

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

Yokel, R. A.

R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
[CrossRef]

Yonamine, M.

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

Appl. Opt.

Biol. Trace Elem. Res.

T. Elnimer, A. Hashem, and R. Assar, “Heroin dependence effects on some major and trace elements,” Biol. Trace Elem. Res. 54, 153–162 (1995).
[CrossRef]

Cell. Mol. Neurobiol.

R. A. Yokel, D. D. Allen, and J. J. Meyer, “Studies of aluminum neurobehavioral toxicity in the intact mammal,” Cell. Mol. Neurobiol. 14, 791–808 (1994).
[CrossRef]

Clin. Chim. Acta

W. W. Harrison and G. G. Clemena, “Survey analysis of trace elements in human fingernails by spark source mass spectrometry,” Clin. Chim. Acta 36, 485–492 (1972).
[CrossRef]

H. L. Bank, J. Roson, J. B. Bigelow, J. Morrison, L. H. Spell, and R. Kantor, “Preparation of fingernails for trace elements analysis,” Clin. Chim. Acta 116, 179–190 (1981).
[CrossRef]

C. M. Vecht-Hart, P. Bode, W. Th. Trouerbach, and H. J. A. Collette, “Calcium and magnesium in human toenails do not reflect bone mineral density,” Clin. Chim. Acta 236, 1–6 (1995).
[CrossRef]

Contrib. Nephrol.

P. Crutzmacher, B. Ehmer, D. Messinger, K. D. Kulbe, and P. Scigalla, “Effect of aluminum overload on the bone marrow response to recombinant human erythropoietin,” Contrib. Nephrol. 76, 315–321 (1989).

Environ. Res.

M. J. Slotnick and J. O. Nriagu, “Validity of human nails as a biomarker of arsenic and selenium exposure: A review” Environ. Res. 102, 125–139 (2006).
[CrossRef]

Forensic Sci. Int.

S. V. Campos, M. Yonamine, R. L. M. Moreau, and O. A. Silva, “Validation of a method to detect cocaine and its metabolites in nails by gas chromatography-mass spectrometry,” Forensic Sci. Int. 159, 218–222 (2006).
[CrossRef]

J. Appl. Phys.

S. J. Rehse, N. Jeyasingham, and J. Diedrich, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

J. Biomed. Opt.

Z. Hosseinimakarem and S. H. Tavassoli, “Analysis of human nails by laser induced breakdown spectroscopy,” J. Biomed. Opt. 16, 057002 (2011).
[CrossRef]

J. Sci. Ind. Res.

R. Mehra and M. Juneja, “Elements in scalp, hair, and nails indicating metal burden in polluted environment,” J. Sci. Ind. Res. 64, 119–124 (2005).

Klin. Wochenschr.

M. R. Martinez, B. G. Extremera, A. M. Martin, J. Cantero-Hinojosa, and V. Moreno-Abadia, “Trace elements in drug addicts,” Klin. Wochenschr. 68, 507–511 (1990).
[CrossRef]

Lasers Med. Sci.

S. Hamzaoui, R. Khleifia, N. Jaidane, and Z. Ben Lakhdar, “Quantitative analysis pathological nails using laser-induced breakdown spectroscopy,” Lasers Med. Sci. 26, 79–83(2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. Sect. B

S. O. Olabanji, O. A. Ajose, N. O. Makinde, M. C. Buoso, D. Ceccato, M. De Poli, and G. Moschini, “Characterization of human fingernail elements using PIXE technique,” Nucl. Instrum. Methods Phys. Res. Sect. B 240, 895–907 (2005).
[CrossRef]

A. S. Paschoa, G. B. Baptista, G. M. Mauricio, C. V. Barros Leite, Y. B. Lerner, and P. F. Issler, “PIXE analysis of elemental concentrations in human hair and nails,” Nucl. Instrum. Methods Phys. Res. Sect. B 3, 352–356 (1984).
[CrossRef]

Proc. SPIE

A. Kumar and P. C. Sharma, “Uses of LIBS technology in biological media,” Proc. SPIE 6377, 637701 (2006).
[CrossRef]

N. Melikechi, H. Ding, S. Rock, O. A. Marcano, and D. Connolly, “Laser-induced breakdown spectroscopy of whole blood and other liquid organic compounds,” Proc. SPIE 6863, 686300 (2008).
[CrossRef]

Spectrochim. Acta, Part B

S. J. Rehse, J. Diedrich, and S. Palchaudhuri, “Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy,” Spectrochim. Acta, Part B 62, 1169–1176 (2007).
[CrossRef]

Other

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 1st ed. (Wiley, 2006).

E. Kiyohide and I. Koichi, “Element concentrations in private nail (II),” in Annual Report of the Tokyo Metropolitan Research Laboratory of Public Health (2001), Vol. 52, pp. 189–193.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Typical LIBS spectrum of a nail with the relevant atomic and ionic emission lines.

Fig. 3.
Fig. 3.

Average of fractional spectral power of observed elements in healthy and addicted subjects in the first experiment. Y-axis has a logarithmic scale.

Fig. 4.
Fig. 4.

Function scores of each sample obtained with DFA in the first experiment. Twenty-six out of 30 healthy subjects (solid circles) and 26 out of 30 addicted individuals (triangles) were correctly classified in the original groups.

Fig. 5.
Fig. 5.

Number of correct classifications for each sample for all five experiments. Sample numbers 1 to 30 and 31 to 60 belong to the control and case group, respectively.

Tables (4)

Tables Icon

Table 1. Atomic and Ionic Emission Lines Used in Total Spectral Power

Tables Icon

Table 2. Number of Cases Correctly Classified in the First Experimenta

Tables Icon

Table 3. Number of Cases Correctly Classified in Cross-Validation Test in Five Experiments

Tables Icon

Table 4. Thirteen Neutral and Ionic Species Used in DFA and Wilks’ Lambda in Five Experiments

Metrics