Abstract

A polymer based dual-slab waveguide Young’s interferometer was demonstrated for biochemical sensing. Evanescent field is utilized for probing the binding events of biomolecules on the waveguide surface. Refractive index sensing in analyte and protein adsorption on the sensing surface were investigated with glucose de-ionized water solution and bovine serum albumin, immunoglobulin G solutions in phosphate buffered saline buffer. A detection limit of 105 RIU and 4pg/mm2 was achieved for homogeneous and surface sensing, respectively. Also, the influence of water absorption inside the polymeric device on the measurement stability was evaluated. The results indicate that the waveguide polymer sensor fabricated with the spin coating technique can achieve a satisfactory sensitivity for homogeneous refractive index sensing and, as well, for monitoring molecular binding events on the surface.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed. (Springer2009).
  2. R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
    [CrossRef]
  3. A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
    [CrossRef]
  4. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
    [CrossRef]
  5. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [CrossRef]
  6. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
    [CrossRef]
  7. J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
    [CrossRef]
  8. W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225(1991).
    [CrossRef]
  9. A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000).
    [CrossRef]
  10. G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
    [CrossRef]
  11. G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
    [CrossRef]
  12. Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
    [CrossRef]
  13. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  14. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  15. T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
    [CrossRef]
  16. R. C. Weast, Handbook of Chemistry and Physics, 55th ed. (CRC Press, 1974), p. D-205.
  17. M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
    [CrossRef]
  18. J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45, 1938–1942 (2006).
    [CrossRef]
  19. G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
    [CrossRef]
  20. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
    [CrossRef]
  21. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
    [CrossRef]
  22. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
    [CrossRef]
  23. B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
    [CrossRef]
  24. J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
    [CrossRef]

2011 (1)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

2010 (2)

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

2009 (2)

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

2008 (2)

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

2007 (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

2006 (2)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

J.-N. Yih, Y.-M. Chu, Y.-C. Mao, W.-H. Wang, F.-C. Chien, C.-Y Lin, K.-L. Lee, P.-K. Wei, and S.-J. Chen, “Optical waveguide biosensors constructed with subwavelength gratings,” Appl. Opt. 45, 1938–1942 (2006).
[CrossRef]

2005 (1)

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

2003 (3)

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

2001 (1)

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

2000 (1)

1999 (1)

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

1996 (1)

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

1991 (1)

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225(1991).
[CrossRef]

1989 (1)

1978 (1)

B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
[CrossRef]

Agnarsson, B.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Airoudj, A.

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

Arnfinnsdottir, N.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Beche, B.

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

Besselink, G. A. J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Brand, S.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, “Interferometric sensor for detection of surface-bound bioreactions,” Appl. Opt. 39, 6396–6405 (2000).
[CrossRef]

Brecht, A.

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

Bruck, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Chao, D. Y.

B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
[CrossRef]

Chen, S.-J.

Chien, F.-C.

Chu, Y.-M.

Cottier, K.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Cross, G. H.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Debarnot, D.

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

Fair, B. D.

B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
[CrossRef]

Freeman, N. J.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Gauglitz, G.

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

Gaviot, E.

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

Geckeler, K. E.

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

Greve, J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Gudjonsson, T.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Hainberger, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

Halldorsson, J.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Hamori, A.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).

Heideman, R. G.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

Horvath, R.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Horváth, R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed. (Springer2009).

Ingthorsson, S.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Jamieson, A. M.

B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
[CrossRef]

Kanger, J. S.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Känsäkoski, M.

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Kim, G.-D.

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Kim, J.-W.

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

Kim, K.-D.

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Kim, K.-J.

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

Kozma, P.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Krauter, R.

Künzel, C.

Kurunczi, S.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Lämmerhofer, M.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

Larsen, N. B.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Lee, H.-S.

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Lee, K.-L.

Lee, S.-S.

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Leosson, K.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Lin, C.-Y

Lindvold, L. R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

Lukosz, W.

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225(1991).
[CrossRef]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

Määttälä, M.

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Mao, Y.-C.

Melnik, E.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

Mormile, P.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

Muellner, P.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

Myllylä, R.

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Oh, M.-C.

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

Peel, L. L.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Petti, L.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

Piehler, J.

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

Poncin-Epaillard, F.

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

Popplewell, J. F.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Reeves, A. A.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Ren, Y.

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

Schulte, H.

Shichijyo, S.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

Shioda, T.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

Son, G.-S.

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Stefan, M.

Suzuki, K.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

Swann, M. J.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

Takamatsu, N.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

Tiefenthaler, K.

Uusitalo, S.

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Wang, M.

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Wang, W.-H.

Weast, R. C.

R. C. Weast, Handbook of Chemistry and Physics, 55th ed. (CRC Press, 1974), p. D-205.

Wei, P.-K.

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Yi, J.-A.

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

Yih, J.-N.

Ymeti, A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97, 5–8 (2009).
[CrossRef]

Biosens. Bioelectron. (6)

J. Piehler, A. Brecht, K. E. Geckeler, and G. Gauglitz, “Surface modification for direct immunoprobes,” Biosens. Bioelectron. 11, 579–590 (1996).
[CrossRef]

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lämmerhofer, “Integrated polymer-based Mach–Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26, 3832–3837 (2011).
[CrossRef]

W. Lukosz, “Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing,” Biosens. Bioelectron. 6, 215–225(1991).
[CrossRef]

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, and N. J. Freeman, “A new quantitative optical biosensor for protein characterisation,” Biosens. Bioelectron. 19, 383–390 (2003).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron. 22, 2591–2597 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

J.-W. Kim, K.-J. Kim, J.-A. Yi, and M.-C. Oh, “Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers,” IEEE J. Sel. Top. Quantum Electron. 16, 973–980 (2010).
[CrossRef]

J. Appl. Phys. (1)

G. H. Cross, Y. Ren, and N. J. Freeman, “Young’s fringes from vertically integrated slab waveguides: applications to humidity sensing,” J. Appl. Phys. 86, 6483–6488 (1999).
[CrossRef]

J. Colloid Interf. Sci. (1)

B. D. Fair, D. Y. Chao, and A. M. Jamieson, “Mutual translational diffusion coefficients in bovine serum albumen solutions measured by quasielastic laser light scattering,” J. Colloid Interf. Sci. 66, 323–330 (1978).
[CrossRef]

J. Micromech. Microeng. (1)

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng. 13, 419–424 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Opt. Commun. (2)

A. Airoudj, B. Beche, D. Debarnot, E. Gaviot, and F. Poncin-Epaillard, “Integrated SU-8 photonic gas sensors based on PANI polymer devices: comparison between metrological parameters,” Opt. Commun. 282, 3839–3845 (2009).
[CrossRef]

G.-D. Kim, G.-S. Son, H.-S. Lee, K.-D. Kim, and S.-S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Opt. Commun. 281, 4644–4647 (2008).
[CrossRef]

Polymer (1)

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, “Influence of water sorption on refractive index of fluorinated polymide,” Polymer 44, 137–142 (2003).
[CrossRef]

Proc. SPIE (1)

M. Wang, S. Uusitalo, M. Määttälä, R. Myllylä, and M. Känsäkoski, “Integrated dual-slab waveguide interferometer for glucose concentration detection in the physiological range,” Proc. SPIE 7003, 70031N (2008).
[CrossRef]

Sensors Actuators B (1)

Y. Ren, P. Mormile, L. Petti, and G. H. Cross, “Optical waveguide humidity sensor with symmetric multilayer configuration,” Sensors Actuators B 75, 76–82 (2001).
[CrossRef]

Other (3)

P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).

R. C. Weast, Handbook of Chemistry and Physics, 55th ed. (CRC Press, 1974), p. D-205.

R. G. Hunsperger, Integrated Optics Theory and Technology, 6th ed. (Springer2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of dual-slab waveguide Young’s interferometer.

Fig. 2.
Fig. 2.

Dual slab Young’s interferometer (a) SEM cross-section image of the fabricated multilayer structure; (b) the output beams at the end-face; (c) fringe pattern generated at 150 µm distance.

Fig. 3.
Fig. 3.

Simulation of the guided mode through the dual slab Young’s interferometer (on the left) and the generated fringe pattern in the far field (on the right).

Fig. 4.
Fig. 4.

Measurement set-up for dual-slab interferometer sensor. Light was launched and collected by two objectives with magnifications of 40× and 60×, respectively. Samples were delivered on the sensing waveguide by a continuous syringe pump through to a flow cell made from PMMA. A computer was used to control the pump and record the captured images from a CMOS camera.

Fig. 5.
Fig. 5.

Sensor response after applying water to the sensing window (a) without further treatment (b) treated 2 min in a UVO cleaner.

Fig. 6.
Fig. 6.

Sensor responses when applying (a) high, (b) medium, (c) low concentrations of glucose dilutions marked with their corresponding Δnc derived from the glucose concentrations.

Fig. 7.
Fig. 7.

Change in the refractive index of the liquid sample Δnc versus change in the effective refractive index Δneff.

Fig. 8.
Fig. 8.

Sensor responses from surface adsorbed proteins: (a) 2mg/ml BSA in PBS buffer (b) 0.1mg/ml goat anti-mouse IgG labeled with Alexa 546 in PBS buffer and bound IgG-Alexa546 on the sensor surface detected with fluorescence microscopy.

Tables (1)

Tables Icon

Table 1. Waveguide Parameters and Calculated Theoretical Sensitivity

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos(Δφδ),
Δneff=neffncΔncorΔneff=neffncΔtad,
δ=2πλ0L·Δneff,
LOD=3σ.
Δnc=0.14713×Concentration.
Γ=Δtadnadncdn/dc,

Metrics