Abstract

We investigated a high-precision optical method for measuring the thickness of biological samples regardless of their transparency. The method is based on the precise measurement of optical path length difference of the end surfaces of objects, using a dual-arm axial-scanning low-coherence interferometer. This removes any consideration of the shape, thickness, or transparency of testing objects when performing the measurement. Scanning the reference simplifies the measurement setup, resulting in unambiguous measurement. Using a 1310nm wavelength superluminescent diode, with a 65nm bandwidth, the measurement accuracy was as high as 11.6μm. We tested the method by measuring the thickness of both transparent samples and nontransparent soft biological tissues.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).
  2. M. Miclear, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, “Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing,” Opt. Express 18, 3700–3707 (2010).
    [CrossRef]
  3. A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
    [CrossRef]
  4. P. de Groot, J. Biegen, J. Clark, X. C. de Lega, and D. Grigg, “Optical interferometry for measurement of the geometric dimensions of industrial parts,” Appl. Opt. 41, 3853–3860(2002).
    [CrossRef] [PubMed]
  5. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
    [CrossRef] [PubMed]
  6. Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
    [CrossRef]
  7. M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
    [CrossRef]
  8. C. Poilane and P. Sandoz, “Thickness measurement of nontransparent free films by double-side white-light interferometry: calibration and experiments,” Rev. Sci. Instrum. 77, 055102 (2006).
    [CrossRef]
  9. D.-H. Kim and I. K. Ilev, “Simple confocal thickness gauge based on fibre-optic confocal sensor for non-contact measurement,” Electron. Lett. 46, 1594–1595 (2010).
    [CrossRef]
  10. A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
    [CrossRef]
  11. Y. Zhu, N. G. Terry, and A. Wax, “Scanning fiber angle-resolved low coherence interferometry,” Opt. Lett. 34, 3196–3198(2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2006 (1)

C. Poilane and P. Sandoz, “Thickness measurement of nontransparent free films by double-side white-light interferometry: calibration and experiments,” Rev. Sci. Instrum. 77, 055102 (2006).
[CrossRef]

2004 (1)

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

2003 (1)

Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
[CrossRef]

2002 (3)

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

P. de Groot, J. Biegen, J. Clark, X. C. de Lega, and D. Grigg, “Optical interferometry for measurement of the geometric dimensions of industrial parts,” Appl. Opt. 41, 3853–3860(2002).
[CrossRef] [PubMed]

1991 (1)

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
[CrossRef]

1987 (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).

Alter, C. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).

Biegen, J.

Clark, J.

de Groot, P.

de Lega, X. C.

Drommer, W.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Ertmer, W.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Fankhauser, F.

Faust, S.

Fercher, A. F.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
[CrossRef]

Graener, H.

Grigg, D.

Haruna, M.

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Heisterkamp, A.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Hitzenberger, C.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
[CrossRef]

Hsu, C.-C.

Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
[CrossRef]

Ilev, I. K.

D.-H. Kim and I. K. Ilev, “Simple confocal thickness gauge based on fibre-optic confocal sensor for non-contact measurement,” Electron. Lett. 46, 1594–1595 (2010).
[CrossRef]

Jacques, S. L.

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).

Jian, Z.-C.

Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
[CrossRef]

Juchem, M.

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
[CrossRef]

Kim, D.-H.

D.-H. Kim and I. K. Ilev, “Simple confocal thickness gauge based on fibre-optic confocal sensor for non-contact measurement,” Electron. Lett. 46, 1594–1595 (2010).
[CrossRef]

Konishi, Y.

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Lubatschowski, H.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Mamom, T.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Miclear, M.

Nishi, H.

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Ohmi, M.

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Poilane, C.

C. Poilane and P. Sandoz, “Thickness measurement of nontransparent free films by double-side white-light interferometry: calibration and experiments,” Rev. Sci. Instrum. 77, 055102 (2006).
[CrossRef]

Prahl, S. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).

Ripken, T.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Sandoz, P.

C. Poilane and P. Sandoz, “Thickness measurement of nontransparent free films by double-side white-light interferometry: calibration and experiments,” Rev. Sci. Instrum. 77, 055102 (2006).
[CrossRef]

Seifert, G.

Skrzypczak, U.

Su, D.-C.

Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
[CrossRef]

Terry, N. G.

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Wang, X.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Wax, A.

Welling, H.

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Yamada, Y.

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Zhang, C.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, and H. Lubatschowski, “Nonlinear side effects of fs pulses inside corneal tissue during photodisruption,” Appl. Phys. B 74, 419–425 (2002).
[CrossRef]

Electron. Lett. (1)

D.-H. Kim and I. K. Ilev, “Simple confocal thickness gauge based on fibre-optic confocal sensor for non-contact measurement,” Electron. Lett. 46, 1594–1595 (2010).
[CrossRef]

J. Biomed. Opt. (1)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

J. Modern Opt. (1)

A. F. Fercher, C. Hitzenberger, and M. Juchem, “Measurement of intraocular optical distances using partially coherent laser-light,” J. Modern Opt. 38, 1327–1333 (1991).
[CrossRef]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of He–Ne laser light scattering by human dermis,” Lasers Life Sci. 1, 309–334 (1987).

Meas. Sci. Technol. (1)

M. Ohmi, H. Nishi, Y. Konishi, Y. Yamada, and M. Haruna, “High-speed simultaneous measurement of refractive index and thickness of transparent plates by low-coherence interferometry and confocal optics,” Meas. Sci. Technol. 15, 1531–1535 (2004).
[CrossRef]

Opt. Commun. (1)

Z.-C. Jian, C.-C. Hsu, and D.-C. Su, “Improved technique for measuring refractive index and thickness of a transparent plate,” Opt. Commun. 226, 135–140 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

C. Poilane and P. Sandoz, “Thickness measurement of nontransparent free films by double-side white-light interferometry: calibration and experiments,” Rev. Sci. Instrum. 77, 055102 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the experimental setup. See text for details.

Fig. 2
Fig. 2

(a) Detector response while the reference mirror was translated in the x direction with constant speed. (b) Interference amplitude change measured at each mirror position with vibrating reference mirror.

Fig. 3
Fig. 3

Measurement data for (a) a solidified bovine milk fat and (b) a slice of processed bovine tissue.

Fig. 4
Fig. 4

Measurement data for (a) a 5 mm metal plate and (b) a 6 mm plastic plate.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d S 1 = ( n F L F R + L R + x 1 ) ( n F L F S + L S + n B S L B S + L S 1 ) ,
d S 2 = ( n F L F R + L R + x 2 ) ( n F L F S + L S + n B S L B S + L S 2 ) .
d S 10 = ( n F L F R + L R + x 10 ) ( n F L F S + L S + n B S L B S + L S 1 ) ,
d S 20 = ( n F L F R + L R + x 20 ) ( n F L F S + L S + n B S L B S + L S 2 ) .
d S 1 + d S 2 + D = d S 10 + d S 20 + D 0 .
D = ( x 10 + x 20 ) ( x 1 + x 2 ) + D 0 .
L R = L S + n B S L B S + L S 1 ,
L S 2 > L S 1 + L M 1 M 2 ,

Metrics