Abstract

A semianalytical model for light collection by integrated waveguide probes is developed by extending previous models used to describe fiber probes. The efficiency of waveguide probes is compared to that of different types of fiber probes for different thicknesses of a weakly scattering sample. The simulation results show that integrated probes have a collection efficiency that is higher than that of small-core fiber probes, and, in the particular case of thin samples, also exceeds the collection efficiency of large-core highly multimode fiber probes. An integrated waveguide probe with one excitation and eight collector waveguides is fabricated and applied to excite and collect luminescence from a ruby rod. The experimental results are in good agreement with the simulation and validate the semianalytical model.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
    [CrossRef] [PubMed]
  2. S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
    [CrossRef]
  3. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, and H. Saisse, “Simulation et optimisation des capteurs a fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
    [CrossRef] [PubMed]
  4. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996).
    [CrossRef]
  5. A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE 65, 1030–1061 (1977).
    [CrossRef]
  6. N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
    [CrossRef]
  7. N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
    [CrossRef] [PubMed]
  8. P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
    [CrossRef] [PubMed]
  9. I. R. Lewis and P. R. Griffith, “Raman spectrometry with fiber-optic sampling,” Appl. Spectrosc. 50, 12A–30A (1996).
    [CrossRef]
  10. P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
    [CrossRef]
  11. K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
    [CrossRef]
  12. R. Herrmann and J. Hertel, “Mode launching on a multimode slab-waveguide by a plane wave,” Appl. Phys. A 9, 307–313(1976).
    [CrossRef]
  13. In case of a Gaussian profile, the NA would be defined by the angle at which the collected power decays by 1/e2 with respect to the maximum. The integral of a Gaussian function between 0 and the point where it decays by 1/e2 is 95.5% of the integral between 0 and +∞.
  14. W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
    [CrossRef]
  15. T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
    [CrossRef]
  16. D. C. Cronemeyer, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703–1705 (1966).
    [CrossRef]

2010 (2)

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

2003 (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

2001 (1)

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

1996 (2)

1993 (1)

P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
[CrossRef]

1986 (1)

1984 (1)

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

1977 (1)

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE 65, 1030–1061 (1977).
[CrossRef]

1976 (1)

R. Herrmann and J. Hertel, “Mode launching on a multimode slab-waveguide by a plane wave,” Appl. Phys. A 9, 307–313(1976).
[CrossRef]

1966 (1)

1961 (1)

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Akca, B. I.

Angel, S. M.

Asawa, C. K.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Bruining, H. A.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

Carter, E. A.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

Cooney, T. F.

Cronemeyer, D. C.

D’Haenens, I. J.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Dao, N. Q.

de Ridder, R. M.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Driessen, A.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Evtuhov, V.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Fevrier, H.

Gagnon, D.

P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
[CrossRef]

Geng, Y.

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

Griffith, P. R.

Herrmann, R.

R. Herrmann and J. Hertel, “Mode launching on a multimode slab-waveguide by a plane wave,” Appl. Phys. A 9, 307–313(1976).
[CrossRef]

Hertel, J.

R. Herrmann and J. Hertel, “Mode launching on a multimode slab-waveguide by a plane wave,” Appl. Phys. A 9, 307–313(1976).
[CrossRef]

Hilderink, L. T. H.

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

Hoskins, R. H.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Hou, C.

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

Ishimaru, A.

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE 65, 1030–1061 (1977).
[CrossRef]

Ismail, N.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Jouan, M.

Lambeck, P. V.

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

Lewis, I. R.

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

Maiman, T. H.

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

McCreery, R. L.

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Olivier, P.

P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
[CrossRef]

Plaza, P.

Pollnau, M.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Puppels, G. J.

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

Rioux, S.

P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
[CrossRef]

Saisse, H.

Schwab, S. D.

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Skinner, H. T.

Sun, F.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

Wörhoff, K.

N. Ismail, B. I. Akca, F. Sun, K. Wörhoff, R. M. de Ridder, M. Pollnau, and A. Driessen, “An integrated approach to laser delivery and confocal signal detection,” Opt. Lett. 35, 2741–2743 (2010).
[CrossRef] [PubMed]

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

Yang, G.

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

Zhang, W.

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

Anal. Chem. (1)

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

R. Herrmann and J. Hertel, “Mode launching on a multimode slab-waveguide by a plane wave,” Appl. Phys. A 9, 307–313(1976).
[CrossRef]

Appl. Spectrosc. (2)

IEEE Photon. Technol. Lett. (1)

N. Ismail, F. Sun, K. Wörhoff, A. Driessen, R. M. de Ridder, and M. Pollnau, “Excitation and light collection from highly scattering media with integrated waveguides,” IEEE Photon. Technol. Lett. (to be published).
[CrossRef]

J. Biomed. Opt. (1)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride: a versatile material for integrated optics application,” J. Electrochem. Soc. 149, F85–F91(2002).
[CrossRef]

J. Invest. Dermatol. (1)

P. J. Caspers, G. W. Lucassen, E. A. Carter, H. A. Bruining, and G. J. Puppels, “In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles,” J. Invest. Dermatol. 116, 434–442 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

P. Olivier, S. Rioux, and D. Gagnon, “Mathematical modeling of the solid angle function, part II: transmission through refractive media,” Opt. Eng. 32, 2266–2270 (1993).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

W. Zhang, C. Hou, Y. Geng, and G. Yang, “Closely packed micro optical fiber arrays in laser scanning system,” Opt. Quantum Electron. 41, 981–988 (2010).
[CrossRef]

Phys. Rev. (1)

T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Proc. IEEE (1)

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE 65, 1030–1061 (1977).
[CrossRef]

Other (1)

In case of a Gaussian profile, the NA would be defined by the angle at which the collected power decays by 1/e2 with respect to the maximum. The integral of a Gaussian function between 0 and the point where it decays by 1/e2 is 95.5% of the integral between 0 and +∞.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Top view of a multiwaveguide SiON integrated probe for backscattered light collection. The waveguide cross section is shown in the inset, where w = 5 μm and h = 0.82 μm . The separation between adjacent waveguides is d = 11 μm .

Fig. 2
Fig. 2

Schematic of excitation and collector waveguides separated by distance d. P e is the power coupled into the excitation waveguide and P c is the power coupled back into the collector waveguide.

Fig. 3
Fig. 3

(a) Plane wave incident on a waveguide facet from an arbitrary direction, (b) s-polarized plane wave incident in the x z plane.

Fig. 4
Fig. 4

Effective collection area A eff ( ϑ , φ ) for a waveguide with cross section 5 μm × 0.82 μm and an s-polarized incident plane wave.

Fig. 5
Fig. 5

Total power (solid curves) coupled to the collector waveguide (for TE and TM polarizations) from an incident plane wave ( λ = 693 nm ) tilted by an angle ϑ. (a) Horizontal tilt (when φ = π / 2 ), (b) vertical tilt (when φ = 0 ). The power coupled to each mode (markers and dashed curves) is shown for both horizontally and vertically tilted plane waves.

Fig. 6
Fig. 6

Figure of merit S as a function of the sample thickness t for two integrated dual-waveguide probes with cross sections 5 μm × 0.82 μm and distances d = 11 μm and d = 6 μm (black curves) compared to those (gray curves) of a large-core dual-fiber probe (mathematical model in [5]; core diameter of 100 μm , d = 210 μm ) and two small-core dual-fiber probes ( d = 11 μm , core diameters of 5 and 3 μm , respectively).

Fig. 7
Fig. 7

Power per unit thickness collected by an integrated probe from a layer situated inside the sample as a function of the layer depth z for two integrated dual-waveguide probes with cross sections 5 μm × 0.82 μm and distances d = 11 μm and d = 6 μm (black curves) compared to those (gray curves) of a large-core dual-fiber probe (mathematical model in [5]; core diameter of 100 μm , d = 210 μm ) and two small-core dual-fiber probes ( d = 11 μm , core diameters of 5 and 3 μm , respectively).

Fig. 8
Fig. 8

Waveguide probe performance (for 693 nm ) as a function of waveguide width at constant thickness h = 0.82 μm and core index n = 1.5249 . (a) Number of modes, (b) function representing the inverse of the minimum confinement factor (apart from a constant term = 1 ) both for TE and TM polarizations. (c) Average effective area for both s- and p-polarized incident plane waves.

Fig. 9
Fig. 9

Waveguide probe performance (for 693 nm ) as a function of waveguide height for constant width w = 5 μm and core index n = 1.5249 . (a) Number of modes, (b) function representing the inverse of the minimum confinement factor (apart from a constant term = 1 ) both for TE and TM polarizations. (c) Average effective area for both s- and p-polarized incident plane waves.

Fig. 10
Fig. 10

Waveguide probe performance (for 693 nm ) as a function of core refractive index for constant width w = 5 μm and height h = 0.82 μm . (a) Number of modes, (b) function representing the inverse of the minimum confinement factor (apart from constant term = 1 ) both for TE and TM polarizations. (c) Average effective area for both s- and p-polarized incident plane waves.

Fig. 11
Fig. 11

Setup for the measurement of fluorescence from a ruby rod. The PM500 is a high-precision motion controller that allows movement of the ruby rod at different distances from the waveguide probe.

Fig. 12
Fig. 12

(a) Fluorescence measured by a waveguide probe as a function of the distance d between excitation and collector waveguides, (b) fluorescence measured by a dual-waveguide probe with d = 11 μm as a function of the distance D between the probe and the ruby.

Tables (1)

Tables Icon

Table 1 Probe Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z ) = P e T e ρ z ( x , y ) ,
ρ z ( x , y ) = 1 π σ x ( z ) σ y ( z ) exp ( x 2 σ x 2 ( z ) + y 2 σ y 2 ( z ) ) .
d I s ( x , y , z ) = P e T e ρ z ( x , y ) β N d x d y d z ,
d P c = d I s ( x , y , z ) Ω ( x , y , z ) .
Ω ( x , y , z ) = 4 π A eff ( x , y , z ) A s ( x , y , z ) ,
d P c = P e T e A eff ( x , y , z ) β N π r 2 σ x ( z ) σ y ( z ) exp ( x 2 σ x 2 ( z ) + y 2 σ y 2 ( z ) ) d x d y d z .
S = T e A eff ( x , y , z ) π r 2 σ x ( z ) σ y ( z ) exp ( x 2 σ x 2 ( z ) + y 2 σ y 2 ( z ) ) d x d y d z .

Metrics