Abstract

A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full width at half-maximum from 592 to 610nm was created for the use in a dual-pump broadband coherent anti-Stokes Raman spectroscopy (CARS) system called width increased dual-pump enhanced CARS (WIDECARS). The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes was used in the amplifier dye cell. To create this laser, a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640 and Pyrromethene dyes 597 and 650, as well as mixtures of these dyes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649–657 (1975).
    [CrossRef]
  2. W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge University, 2004).
  3. J. P. Webb, “Tunable organic dye lasers,” Anal. Chem. 44, 30–46 (1972).
    [CrossRef]
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  5. W. D. Brobst and J. E. Allen, Jr., “Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber,” Appl. Opt. 26, 3663–3670 (1987).
    [CrossRef] [PubMed]
  6. R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974).
    [CrossRef]
  7. U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
    [CrossRef]
  8. S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010).
    [CrossRef] [PubMed]
  9. T. G. Pavlopoulos, “Scaling of dye lasers with improved laser dyes,” Prog. Quantum Electron. 26, 193–224 (2002).
    [CrossRef]
  10. R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987).
    [CrossRef]
  11. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  12. S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
    [CrossRef]
  13. S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).
  14. E. H. Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
    [CrossRef] [PubMed]
  15. F. Y. Yueh and E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988).
    [CrossRef] [PubMed]
  16. F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
    [CrossRef]
  17. K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.
  18. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
    [CrossRef]
  19. J. Hult, “Construction of a modeless laser for applications in CARS spectroscopy,” Master’s thesis (Lund University1998).
  20. S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007).
    [CrossRef]
  21. A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
    [CrossRef]
  22. D. V. Flores, “Analysis of lean premixed turbulent combustion using coherent anti-Stokes Raman spectroscopy temperature measurements,” Ph.D. dissertation (Chemical Engineering Department, Brigham Young University, 2003).
  23. J. K. Haslam and P. O. Hedman, “The use of two pyromethene dyes in a single Stokes dye laser to make CARS temperature and multiple species (CO, CO2, O2, and, N2) concentration measurements,” in Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, 1996), paper WSS/CI 96F-086.
  24. W. P. Partridge, N. M. Laurendeau, C. C. Johnson, and R. N. Seppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994).
    [CrossRef] [PubMed]
  25. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  26. D. Hunt, Rocky Mountain Instruments Company, 106 Laser Dr., Lafayette, Colo., 80026 (personal communication, 2009).
  27. A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
    [CrossRef]
  28. R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004).
    [CrossRef]
  29. S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
    [CrossRef] [PubMed]
  30. F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
    [CrossRef] [PubMed]
  31. P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
    [CrossRef]
  32. P. Burlamachhi, R. Pratesi, and U. Vanni, “Tunable superradiant emission from a planar dye laser,” Appl. Opt. 15, 2684–2689 (1976).
    [CrossRef]
  33. G. I. Farmer, B. G. Huth, L. M. Taylor, and M. R. Kagan, “Concentration and dye length dependence of organic dye laser spectra,” Appl. Opt. 8, 363–366 (1969).
    [CrossRef] [PubMed]
  34. F. P. Schafer, Dye Lasers, 2nd Revised Ed. (Springer-Verlag, 1977).
  35. A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
    [CrossRef]
  36. S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
    [CrossRef] [PubMed]
  37. T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
    [CrossRef]
  38. M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
    [CrossRef]
  39. L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
    [CrossRef]
  40. M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
    [CrossRef]
  41. B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993).
    [CrossRef]
  42. Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
    [CrossRef]
  43. A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
    [CrossRef]
  44. G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
    [CrossRef]
  45. J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
    [CrossRef]
  46. N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005).
    [CrossRef]
  47. S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.
  48. W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004).
    [CrossRef]
  49. M. Pealat, P. Bouchardy, M. Lefebvre, and J.-P. Taran, “Precision of miliplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

2008 (1)

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

2007 (3)

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).

S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007).
[CrossRef]

2006 (2)

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

2005 (3)

N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005).
[CrossRef]

A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
[CrossRef]

E. H. Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
[CrossRef] [PubMed]

2004 (4)

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004).
[CrossRef]

W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004).
[CrossRef]

2003 (3)

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

2002 (3)

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

T. G. Pavlopoulos, “Scaling of dye lasers with improved laser dyes,” Prog. Quantum Electron. 26, 193–224 (2002).
[CrossRef]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

2001 (1)

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

2000 (1)

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

1999 (2)

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

1997 (2)

M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

1994 (1)

1993 (1)

B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993).
[CrossRef]

1988 (1)

1987 (2)

R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987).
[CrossRef]

W. D. Brobst and J. E. Allen, Jr., “Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber,” Appl. Opt. 26, 3663–3670 (1987).
[CrossRef] [PubMed]

1985 (1)

1978 (1)

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

1977 (1)

P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
[CrossRef]

1976 (1)

1975 (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649–657 (1975).
[CrossRef]

1974 (1)

R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974).
[CrossRef]

1972 (1)

J. P. Webb, “Tunable organic dye lasers,” Anal. Chem. 44, 30–46 (1972).
[CrossRef]

1969 (1)

Allen, J. E.

Alvarez, M.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

Amat-Guerri, F.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Andrews, A. J.

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

Antcliff, R. R.

R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987).
[CrossRef]

Arbeloa, T.

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

Arbeloa Lopez, T.

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

Banerjee, M.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

Banuelos Preito, J.

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

Banuelos Prieto, J.

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

Barashkov, N. N.

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

Beiting, E. J.

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Beyrau, F.

A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Borst, W. L.

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

Bouchardy, P.

Brobst, W. D.

Burlamachhi, P.

Chattopadhyay, S.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

Chaudhuri, T.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

Costela, A.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Coutts, D. W.

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

Cutler, A. D.

S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010).
[CrossRef] [PubMed]

S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.

Danehy, P. M.

S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010).
[CrossRef] [PubMed]

S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.

Dasgupta, K.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

Datta, A.

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Daulatabad, S. R.

R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Farmer, G. I.

Flamant, P.

P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
[CrossRef]

Flores, D. V.

D. V. Flores, “Analysis of lean premixed turbulent combustion using coherent anti-Stokes Raman spectroscopy temperature measurements,” Ph.D. dissertation (Chemical Engineering Department, Brigham Young University, 2003).

Frederickson, K.

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.

Gangopadhyay, S.

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

Garcia-Moreno, I.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

Gorman, A. A.

Grasser, T. W.

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.

Hamblett, I.

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Haslam, J. K.

J. K. Haslam and P. O. Hedman, “The use of two pyromethene dyes in a single Stokes dye laser to make CARS temperature and multiple species (CO, CO2, O2, and, N2) concentration measurements,” in Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, 1996), paper WSS/CI 96F-086.

Hedman, P. O.

J. K. Haslam and P. O. Hedman, “The use of two pyromethene dyes in a single Stokes dye laser to make CARS temperature and multiple species (CO, CO2, O2, and, N2) concentration measurements,” in Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, 1996), paper WSS/CI 96F-086.

Hogan, G. P.

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

Hult, J.

J. Hult, “Construction of a modeless laser for applications in CARS spectroscopy,” Master’s thesis (Lund University1998).

Hunt, D.

D. Hunt, Rocky Mountain Instruments Company, 106 Laser Dr., Lafayette, Colo., 80026 (personal communication, 2009).

Huth, B. G.

Jackson, M. N.

S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007).
[CrossRef]

Jarrett, O.

R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987).
[CrossRef]

Johnson, C. C.

Jones, G.

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

Juramy, P.

P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
[CrossRef]

Kagan, M. R.

Kearney, S. P.

S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007).
[CrossRef]

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.

Khare, R.

R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004).
[CrossRef]

King, T. A.

Klueva, O.

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

Koldunov, M. F.

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

Kravchenko, Y. V.

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

Kumar, S.

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

Kundu, S.

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

Kusumoto, Y.

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

Laurendeau, N. M.

Lefebvre, M.

Leipertz, A.

A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Leisner, T.

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

Liras, M.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

Liu, L.

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

Lopez Arbeloa, F.

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Lopez Arbeloa, I.

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Lopez Arbeloa, T.

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Lucht, R. P.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Maeno, K.

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

Magnotti, G.

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.

Malarski, A.

A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

Manenkov, A. A.

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

Martinez Martinez, V.

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

McGonigle, A. J. S.

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

Meinen, J.

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

Meyer, Y. H.

P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
[CrossRef]

Mula, S.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

Nair, S. K. S.

O’Byrne, S.

S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).

Pacheco, D.

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

Pal, T. B.

Palsule, C. P.

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

Partridge, W. P.

Pavlopoulos, T. G.

T. G. Pavlopoulos, “Scaling of dye lasers with improved laser dyes,” Prog. Quantum Electron. 26, 193–224 (2002).
[CrossRef]

Pealat, M.

Platt, U.

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

Pohler, D.

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

Pokotilo, I. L.

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

Pratesi, R.

Rahn, M. D.

Raju, B. B.

B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993).
[CrossRef]

Rao, C. S.

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

Ray, A. K.

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

Roekaerts, D.

Sanders, W.

W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004).
[CrossRef]

Sasikumar,

Sasikumar, S.

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

Sastre, R.

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Sato, H.

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

Schafer, F. P.

F. P. Schafer, Dye Lasers, 2nd Revised Ed. (Springer-Verlag, 1977).

Seeger, T.

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Seppel, R. N.

Shank, C. V.

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649–657 (1975).
[CrossRef]

Shirk, J. S.

R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974).
[CrossRef]

Silfvast, W. T.

W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge University, 2004).

Sinha, S.

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

Sisk, W. N.

N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005).
[CrossRef]

W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004).
[CrossRef]

Spiker, R. C.

R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974).
[CrossRef]

Sung, C. J.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Tanaka, N.

N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005).
[CrossRef]

Taran, J.-P.

Taylor, L. M.

Tedder, S. A.

S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010).
[CrossRef] [PubMed]

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.

Vanni, U.

Varadarajan, T. S.

B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993).
[CrossRef]

Veen, E. H.

Webb, C. E.

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

Webb, J. P.

J. P. Webb, “Tunable organic dye lasers,” Anal. Chem. 44, 30–46 (1972).
[CrossRef]

Wheeler, J. L.

Yahiro, S.

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

Yang, S. R.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Yu, G.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Yueh, F. Y.

Zhao, J. R.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

AIAA J. (2)

S. O’Byrne, P. M. Danehy, and A. D. Cutler, “Dual-pump CARS thermometry and species concentration measurements in a supersonic combustor,” AIAA J. 45, 992–993 (2007).

S. P. Kearney and M. N. Jackson, “Dual-pump coherent anti-Stokes Raman scattering thermometry in heavily sooting flames,” AIAA J. 45, 2947–2956 (2007).
[CrossRef]

Anal. Chem. (2)

J. P. Webb, “Tunable organic dye lasers,” Anal. Chem. 44, 30–46 (1972).
[CrossRef]

R. C. Spiker, Jr., and J. S. Shirk, “Quantitative dye laser amplified absorption spectrometry,” Anal. Chem. 46, 572–574 (1974).
[CrossRef]

Appl. Opt. (9)

S. A. Tedder, J. L. Wheeler, A. D. Cutler, and P. M. Danehy, “Width increased dual-pump enhanced CARS,” Appl. Opt. 49, 1305–1313 (2010).
[CrossRef] [PubMed]

E. H. Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
[CrossRef] [PubMed]

F. Y. Yueh and E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

W. D. Brobst and J. E. Allen, Jr., “Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber,” Appl. Opt. 26, 3663–3670 (1987).
[CrossRef] [PubMed]

M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

S. Sinha, A. K. Ray, S. Kundu, Sasikumar, T. B. Pal, S. K. S. Nair, and K. Dasgupta, “Spectral characteristics of a binary dye-mixture laser,” Appl. Opt. 41, 7006–7011 (2002).
[CrossRef] [PubMed]

P. Burlamachhi, R. Pratesi, and U. Vanni, “Tunable superradiant emission from a planar dye laser,” Appl. Opt. 15, 2684–2689 (1976).
[CrossRef]

G. I. Farmer, B. G. Huth, L. M. Taylor, and M. R. Kagan, “Concentration and dye length dependence of organic dye laser spectra,” Appl. Opt. 8, 363–366 (1969).
[CrossRef] [PubMed]

M. Pealat, P. Bouchardy, M. Lefebvre, and J.-P. Taran, “Precision of miliplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef] [PubMed]

Appl. Phys. B (4)

A. K. Ray, S. Kundu, S. Sasikumar, C. S. Rao, S. Mula, S. Sinha, and K. Dasgupta, “Comparative laser performances of Pyrromethene 567 and Rhodamine 6G dyes in copper vapour laser pumped dye lasers,” Appl. Phys. B 87, 483–488(2007).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, F. Amat-Guerri, M. Liras, and R. Sastre, “Efficient and highly photostable solid-state dye lasers based on modified dipyrromethene.BF2 complexes incorporated into solid matrices of poly(methl methacrylate),” Appl. Phys. B 76, 365–369 (2003).
[CrossRef]

A. J. S. McGonigle, A. J. Andrews, G. P. Hogan, D. W. Coutts, and C. E. Webb, “A compact frequency-doubled 10-kHz PRF copper-vapour-laser-pumped dye laser,” Appl. Phys. B 76, 307–311 (2003).
[CrossRef]

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Atmos. Meas. Tech. (1)

U. Platt, J. Meinen, D. Pohler, and T. Leisner, “Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections,” Atmos. Meas. Tech. 2, 713–723 (2009).
[CrossRef]

Chem. Phys. Chem. (1)

F. Lopez Arbeloa, J. Banuelos Prieto, V. Martinez Martinez, T. Arbeloa Lopez, and I. Lopez Arbeloa, “Intramolecular charge transfer in Pyrromethene laser dyes: photophysical behaviour of PM 650,” Chem. Phys. Chem. 5, 1762–1771 (2004).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

Y. Kusumoto, H. Sato, K. Maeno, and S. Yahiro, “Energy transfer dye laser: confirmation of energy transfer by reabsorption effect,” Chem. Phys. Lett. 53, 388–390 (1978).
[CrossRef]

T. Lopez Arbeloa, F. Lopez Arbeloa, I. Lopez Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre, and F. Amat-Guerri, “Correlations between photophysics and lasing properties of dipyrromethene-BF2 dyes in solution,” Chem. Phys. Lett. 299, 315–321 (1999).
[CrossRef]

Combust. Flame (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Juramy, P. Flamant, and Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. 13, 855–865 (1977).
[CrossRef]

J. Appl. Phys. (1)

L. Liu, N. N. Barashkov, C. P. Palsule, S. Gangopadhyay, and W. L. Borst, “Intermolecular energy transfer in binary systems of dye polymers,” J. Appl. Phys. 88, 4860–4870 (2000).
[CrossRef]

J. Lumin. (1)

B. B. Raju and T. S. Varadarajan, “Energy transfer dye laser characteristics of a dye mixture using a new Couramin dye as an acceptor,” J. Lumin. 55, 49–54 (1993).
[CrossRef]

J. Org. Chem. (1)

S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, and S. Chattopadhyay, “Design and development of a new Pyrromethene dye with improved photostability and lasing efficiency: theoretical rationalization of photophysical and photochemical properties,” J. Org. Chem. 73, 2146–2154 (2008).
[CrossRef] [PubMed]

J. Photochem. Photobiol. A (3)

W. N. Sisk and W. Sanders, “The concentration dependence of the normalized photostability of 1,3,5,7,8-pentamethyl-2,6-di-t-butylpyrromethene-difluoroborate complex (PM 597) methanol solutions,” J. Photochem. Photobiol. A 167, 185–189(2004).
[CrossRef]

J. Banuelos Preito, T. Arbeloa, M. Liras, V. Martinez Martinez, and F. Lopez Arbeloa, “Concerning the color change of Pyrromethene 650 in electron-donor solvents,” J. Photochem. Photobiol. A 184, 298–305 (2006).
[CrossRef]

N. Tanaka and W. N. Sisk, “The photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546,” J. Photochem. Photobiol. A 172, 109–114 (2005).
[CrossRef]

J. Raman Spectrosc. (3)

A. Malarski, F. Beyrau, and A. Leipertz, “Interference effects of C2-radicals in nitrogen vibrational CARS thermometry using a frequency-doubled Nd:YAG laser,” J. Raman Spectrosc. 36, 102–108 (2005).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2, and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc. 34, 946–951 (2003).
[CrossRef]

Opt. Commun. (1)

M. Alvarez, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, M. Liras, and R. Sastre, “Laser emission from mixtures of dipyrromethene dyes in liquid solution and in solid polymeric matrices,” Opt. Commun. 267, 469–579 (2006).
[CrossRef]

Opt. Laser Technol. (1)

R. Khare and S. R. Daulatabad, “A non-mixing technique for enhancement of the tuning range of Rhodamine 6G using Rhodamine B,” Opt. Laser Technol. 36, 27–30 (2004).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

G. Jones II, O. Klueva, S. Kumar, and D. Pacheco, “Photochemical and lasing properties of Pyrromethene dyes,” Proc. SPIE 4267, 426741 (2001).
[CrossRef]

Prog. Quantum Electron. (1)

T. G. Pavlopoulos, “Scaling of dye lasers with improved laser dyes,” Prog. Quantum Electron. 26, 193–224 (2002).
[CrossRef]

Quantum Electron. (1)

M. F. Koldunov, Y. V. Kravchenko, A. A. Manenkov, and I. L. Pokotilo, “Relation between spectral and lasing properties for dyes of different classes,” Quantum Electron. 34, 115–119(2004).
[CrossRef]

Rev. Mod. Phys. (1)

C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47, 649–657 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

R. R. Antcliff and O. Jarrett, Jr., “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2079 (1987).
[CrossRef]

Other (9)

W. T. Silfvast, Laser Fundamentals, 2nd ed. (Cambridge University, 2004).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Dual-pump CARS probing of meter-scale turbulent pool fires,” presented at the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (7–10 January 2008), paper AIAA-2008-247.

J. Hult, “Construction of a modeless laser for applications in CARS spectroscopy,” Master’s thesis (Lund University1998).

D. Hunt, Rocky Mountain Instruments Company, 106 Laser Dr., Lafayette, Colo., 80026 (personal communication, 2009).

D. V. Flores, “Analysis of lean premixed turbulent combustion using coherent anti-Stokes Raman spectroscopy temperature measurements,” Ph.D. dissertation (Chemical Engineering Department, Brigham Young University, 2003).

J. K. Haslam and P. O. Hedman, “The use of two pyromethene dyes in a single Stokes dye laser to make CARS temperature and multiple species (CO, CO2, O2, and, N2) concentration measurements,” in Fall Meeting of the Western States Section of the Combustion Institute (University of Southern California, 1996), paper WSS/CI 96F-086.

F. P. Schafer, Dye Lasers, 2nd Revised Ed. (Springer-Verlag, 1977).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustion-heated supersonic jet,” presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Florida (5–8 January 2009), paper AIAA-2009-524.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Drawing of optical setup of the laser. All distances measured with an accuracy of ± 0.5 cm .

Fig. 2
Fig. 2

Transmission curves for spectrally selective optics. The curves for the thin film polarizer were provided by the manufacturer [26].

Fig. 3
Fig. 3

Example of a doubled-peak spectrum demonstrating the type of measurements made to characterize the spectral profile of the laser.

Fig. 4
Fig. 4

Trends of the characteristics of the laser versus dye concentration. Plotted against concentration are (a) FWHM, (b) range (greater than 10% above maximum intensity), (c) peak and half-maximum locations, and (d) percent efficiency. PM 597 was tested at two different excitation energy fluences (indicated as high efficiency and low efficiency).

Fig. 5
Fig. 5

Effect of adding PM 650 to PM 597 in the oscillator dye cell on the spectrum emitted from the oscillator. The goal for WIDECARS is shown as a solid thick line.

Fig. 6
Fig. 6

Trends of the characteristics of the laser versus dye concentration of PM 650, for relatively constant concentrations of PM 597. Some dye mixtures were tested with different excitation energy fluences. In (a) the closed symbols represent half-maximum ranges of the emission peak from PM 597 and the open symbols represent half-maximum ranges of the emission peak from PM 650.

Fig. 7
Fig. 7

Half-maximum wavelengths versus concentrations of PM 650 added to a 50 mg / l solution of PM 597 in ethanol at different angles of incidence of the spectrally selective optic, TFP. Fitted curves are added to show the general trends of the half-maximum. The shaded regions are the wavelengths of the spectra that have energy higher than the half-maximum. Wavelengths of the WIDECARS half-maximum goals are shown as the thickest lines.

Fig. 8
Fig. 8

Efficiency of oscillator versus TFP angle of incidence at a range of PM 650 concentrations added to a 50 mg / l solution of PM 597 in ethanol is shown in (a). FWHM of oscillator versus TFP angle of incidence at a range of PM 650 concentrations added to a 50 mg / l solution of PM 597 in ethanol is shown in (b).

Fig. 9
Fig. 9

Wavelengths of amplifier range, half- maximum, and peaks versus angle of incidence of optics placed in the oscillator cavity. The dye concentrations for the oscillator are 91.92 mg / l PM 597 and 10.58 mg / l PM 650. The dye concentrations for the amplifier are 21.7 mg / l R610 and 8.4 mg / l R640. The blue curves with no symbols represent the dye laser spectrum attributes without a frequency-selective optic in the oscillator cavity.

Fig. 10
Fig. 10

Oscillator laser characteristics versus pumping fluence.

Fig. 11
Fig. 11

Wavelengths of peak, half-maximum, and range from the amplifier for a range of concentrations of Rhodamine dyes in methanol. Shown in (a) are pure R640 solutions in methanol, while shown in (b) are mixtures of R610 and R640 in methanol.

Fig. 12
Fig. 12

Percent standard deviation of a series of single-shot WIDECARS (Pyrromethene dye mixture in oscillator and Rhodamine dye mixture in amplifier) laser spectra and Rhodamine dye laser spectra. Relative standard deviation represents the spectral noise or shot-to-shot stability of the laser. Average spectral profiles of the dye laser are shown on a sec ondary axis.

Metrics