Abstract

The application of a single cube beam splitter (SCBS) microscope to micro-optics characterization is presented. The SCBS in the optical path, with a small angle between the optical axis and its central semireflecting layer, not only gives off-axis digital holograms but also provides dual-channel imaging. It is a unique and easy way to perform uniformity inspection across the entire microlens array. Experimental results on physical spherical phase compensation, single lens characterization, dual-channel imaging, and uniformity inspection are provided to demonstrate the unique properties of SCBS microscopy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jian, “Multilayer optical fiber coupler,” U.S. patent RE40416E (1 July, 2008).
  2. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. D. Nicola, a. P. Ferraro, and E. Caianiello, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17, 2487–2499 (2009).
    [CrossRef] [PubMed]
  3. V. Bardinal, E. Daran, T. Leïchlé, C. Vergnenègre, C. Levallois, T. Camps, V. Conedera, J. B. Doucet, F. Carcenac, H. Ottevaere, and H. Thienpont, “Fabrication and characterization of microlens arrays using a cantilever-based spotter,” Opt. Express 15, 6900–6907 (2007).
    [CrossRef] [PubMed]
  4. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
    [CrossRef] [PubMed]
  5. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [CrossRef] [PubMed]
  6. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
    [CrossRef] [PubMed]
  7. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [CrossRef] [PubMed]
  8. D. Malacara, Optical Shop Testing (Wiley, 1992).
  9. Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
    [CrossRef]
  10. J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235–239 (2007).
    [CrossRef]
  11. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1278 (2009).
    [CrossRef] [PubMed]
  12. Q. Weijuan, K. Bhattacharya, C. O. Choo, Y. Yingjie, and A. Asundi, “Transmission digital holographic microscopy based on a beam-splitter cube interferometer,” Appl. Opt. 48, 2778–2783 (2009).
    [CrossRef]

2009 (3)

2007 (2)

2006 (4)

2003 (1)

Aspert, N.

Asundi, A.

Bardinal, V.

Bhattacharya, K.

Caianiello, E.

Camps, T.

Carcenac, F.

Charrière, F.

Choo, C. O.

Colomb, T.

Conedera, V.

Coppola, G.

Cuche, E.

Daran, E.

Depeursinge, C.

Doucet, J. B.

Emery, Y.

Ferrari, J. A.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235–239 (2007).
[CrossRef]

Ferraro, a. P.

Ferraro, P.

Finizio, A.

Frins, E. M.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235–239 (2007).
[CrossRef]

Grilli, S.

Jian, B.

B. Jian, “Multilayer optical fiber coupler,” U.S. patent RE40416E (1 July, 2008).

Kühn, J.

Leïchlé, T.

Levallois, C.

Liu, D.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Liu, L.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Luan, Z.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Magro, C.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1992).

Marquet, P.

Miccio, L.

Montfort, F.

Nicola, S. D.

Ottevaere, H.

Paturzo, M.

Pierattini, G.

Qu, W.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Thienpont, H.

Vergnenègre, C.

Vespini, V.

Weible, K.

Weijuan, Q.

Yingjie, Y.

Zhi, Y.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Zhou, Y.

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Zhi, W. Qu, D. Liu, Z. Luan, Y. Zhou, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912(2006).
[CrossRef]

Opt. Commun. (1)

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235–239 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (2)

D. Malacara, Optical Shop Testing (Wiley, 1992).

B. Jian, “Multilayer optical fiber coupler,” U.S. patent RE40416E (1 July, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photograph of the SCBS microscope.

Fig. 2
Fig. 2

Schematic of the SCBS microscope. The rays in solid line are used to illustrate the left part of the propagating light; the rays in dashed line are used to illustrate the right part of the propagating light.

Fig. 3
Fig. 3

Phase with physical spherical phase compensation obtained with the SCBS microscope.

Fig. 4
Fig. 4

(a) Digital hologram of the lens, (b) phase reconstructed from the hologram modulo 2 π .

Fig. 5
Fig. 5

3D quantitative height map for a single refractive plano-convex mocrolens obtained with the SCBS microscope.

Fig. 6
Fig. 6

Height profile of the single refractive plano-convex microlens drawn along with the same position as the white solid line in Fig. 4b

Fig. 7
Fig. 7

Experimental demonstration of the dual-channel imaging property of the SCBS microscope. (a) Two phase-shifted images are captured in a single hologram, (b) quantitative phase extracted from the hologram (unit: rad).

Fig. 8
Fig. 8

Uniformity inspection of the linear microlens array. (a) Microlens array is put in the right half of the beam path; (b), (d), (g), (i), (k) symmetric microlens in the both halves of the beam path, thus compensation of the microlens can be observed. (c), (e), (f), (h), (j) Nonsymmetric microlens in both halves of the beam path, thus the phase of the lens cannot be fully compensated; (l) microlens array is moved to the left half of beam path.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h = λ 2 π φ ( n L n S ) ,
ROC = h 2 + D 2 8 h ,

Metrics