Abstract

Fiber imaging bundles have been investigated for use in endoscopic optical coherence tomography (OCT) systems, to obviate the requirement for scanning components within the endoscope probe section. Images have been acquired using several optical configurations, two of which are common path in design. Configurations have been selected as having potential for miniaturization and inclusion in endoscopic-type systems, since the advantages of employing imaging bundles are most clearly seen in this type of system. The various types of bundle available are described, and the properties of the leached bundles used here are discussed in detail, with reference to their effect upon the performance of OCT systems. Images are displayed from measurements made on a range of samples.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  3. I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
    [CrossRef]
  4. A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
    [CrossRef]
  5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in-vivo imaging,” Nat. Biotechnol. 21, 1361–1367.
    [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  7. S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence tomography using a Fourier domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
    [CrossRef] [PubMed]
  8. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866(1993).
    [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  10. S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
    [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In-vivoendoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236–1238 (2004).
    [CrossRef] [PubMed]
  12. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
    [CrossRef] [PubMed]
  13. Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
    [CrossRef]
  14. D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
    [CrossRef]
  15. E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
    [CrossRef]
  16. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
    [CrossRef] [PubMed]
  17. H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).
  18. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005).
    [CrossRef] [PubMed]
  19. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007).
    [CrossRef]
  20. J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea 14, 1–13 (2010).
    [CrossRef] [PubMed]
  21. J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18, 7427–7439 (2010).
    [CrossRef] [PubMed]
  22. P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
    [CrossRef]
  23. D. Heard, Santec Europe Ltd., Magdalen Centre, Robert Robinson Ave., Oxford Science Park, OX4 4GA (personal communication, 2008).
  24. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47, 4560–4568 (2008).
    [CrossRef] [PubMed]
  25. “Wound image bundles,” http://www.schott.com/lightingimaging/english/products/healthcare/imagingfiberoptics/flexiblecomponents/wound.html (Accessed October 2010).
  26. D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
    [CrossRef]
  27. Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
    [CrossRef]
  28. D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
    [CrossRef]
  29. “Image Fiber,” http://www.fujikura.com/prod/imagefiber/p1_1.html (Accessed January 2011).
  30. “Transmitting images,” http://www.schott.com/lightingimaging/english/life-science/medical-products/transmitting-images.html (Accessed October 2010).
  31. K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).
  32. S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
    [CrossRef]
  33. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15, 2151–2165 (2007).
    [CrossRef] [PubMed]
  34. K. Bhura, Schott North America, Inc., 122 Charlton Street, Southbridge, Mass. 01550 (personal communication, November 2008).
  35. W. J. Tomlinson, “Aberrations of GRIN-rod lenses in multimode optical fiber devices,” Appl. Opt. 19, 1117–1126 (1980).
    [CrossRef] [PubMed]
  36. “GrinTech datasheets,” http://www.grintech.de/downloads.html (Accessed October 2010).
  37. “Coatings,” www.photonicsolutions.co.uk/datasheets/casi/CXCoatings.pdf (Accessed October 2010).
  38. U. Sharma and J. U. Kang, “Common-path OCT with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007).
    [CrossRef] [PubMed]
  39. D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971).
    [CrossRef]
  40. X. Li, J.-H. Han, X. Liu, and J. H. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833–4840 (2008).
    [CrossRef] [PubMed]
  41. N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
    [CrossRef]

2010

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18, 7427–7439 (2010).
[CrossRef] [PubMed]

J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea 14, 1–13 (2010).
[CrossRef] [PubMed]

2009

Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

2008

D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
[CrossRef]

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47, 4560–4568 (2008).
[CrossRef] [PubMed]

X. Li, J.-H. Han, X. Liu, and J. H. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833–4840 (2008).
[CrossRef] [PubMed]

2007

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15, 2151–2165 (2007).
[CrossRef] [PubMed]

S.-W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence tomography using a Fourier domain mode-locked laser,” Opt. Express 15, 6210–6217 (2007).
[CrossRef] [PubMed]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007).
[CrossRef]

U. Sharma and J. U. Kang, “Common-path OCT with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

2006

I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
[CrossRef]

2005

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803–1805 (2005).
[CrossRef] [PubMed]

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[CrossRef] [PubMed]

2004

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In-vivoendoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236–1238 (2004).
[CrossRef] [PubMed]

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

1996

1993

1991

A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
[CrossRef]

1987

1980

1971

D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971).
[CrossRef]

Adler, D. C.

Aguirre, A. D.

Alarousu, E.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

Arce-Diego, J. L.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Arsenault, P.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Balboa, I.

I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
[CrossRef]

Bhura, K.

K. Bhura, Schott North America, Inc., 122 Charlton Street, Southbridge, Mass. 01550 (personal communication, November 2008).

Bonja, J.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Boppart, S. A.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996).
[CrossRef] [PubMed]

Bouma, B. E.

Brenner, M.

Brezinski, M. E.

Brix, P.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Carr, S.

Carter, F. D.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

Casaubieilh, P.

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
[CrossRef]

Charrett, T. O. H.

Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

Chen, K. W. S.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Chen, N.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Chen, Z.

Choma, M. A.

Cid, M.

Cucu, R.

Danielson, B. L.

Davies, D. E. N.

Dobre, G.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Fanjul-Vélez, F.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
[CrossRef]

Foley, J. T.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

Ford, H. D.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007).
[CrossRef]

I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Francis, D.

D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
[CrossRef]

Fujimoto, J. G.

Gerstner, K.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Gmitro, A. F.

Gotzinger, E.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Guo, S.

Han, J.-H.

Heard, D.

D. Heard, Santec Europe Ltd., Magdalen Centre, Robert Robinson Ave., Oxford Science Park, OX4 4GA (personal communication, 2008).

Hee, M. R.

Henze, I.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Hitzenberger, C.

A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
[CrossRef]

Hitzenberger, C. K.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Huang, D.

Huang, S.-W.

Huber, R. A.

Izatt, J. A.

Jackson, D.

D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971).
[CrossRef]

James, S. W.

D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
[CrossRef]

Juchen, M.

A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
[CrossRef]

Kang, J. H.

Kang, J. U.

Kano, A.

Kastner, J.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Khairyanto, A.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

Kirkpatrick, N. D.

Krehut, L.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lee, J.

Li, X.

Liang, H.

Lin, C. P.

Liu, X.

Lu, Z.-H.

Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

Luo, W.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

Marks, D. L.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

Mukai, D.

Mukai, D. S.

Myllylä, R.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

Nobes, D. S.

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Olivo, M.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Ortega-Quijano, N.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Paul, D. M.

D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971).
[CrossRef]

Pedro, J.

Pircher, M.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Plichta, A.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Podoleanu, A.

Premachandran, C. S.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Prykäri, T.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

Reichenbach, K. L.

Rubino, R.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Sarunic, M. V.

Saunders, D.

Schlatterbeck, D.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Schlotthauer, E.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Schuman, J. S.

Sharma, U.

U. Sharma and J. U. Kang, “Common-path OCT with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Singh, J.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Singh, J. P.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

Singletary, K. W.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

Sommer, M.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Southern, J. F.

Stifter, D.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Strack, R.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Swanson, E. A.

Tanbakuchi, A.

Tatam, R. P.

Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
[CrossRef]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007).
[CrossRef]

I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
[CrossRef]

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Tearney, G. J.

Tomlinson, W. J.

Tran, P. H.

Udovich, J. A.

Utzinger, U.

Weisser, M.

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

Weissman, N. J.

Whittenberg, C. D.

Wiesauer, K.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Wurm, M.

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

Xie, T.

Xu, C.

Yang, C. H.

Youngquist, R. C.

Zhang, K.

Zu, Y.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Appl. Opt.

Breast Cancer Res. Treat.

S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84, 85–97 (2004).
[CrossRef] [PubMed]

Exp. Fluids

D. S. Nobes, H. D. Ford, and R. P. Tatam, “Three component planar Doppler velocimetry using imaging fibre bundles,” Exp. Fluids 36, 3–10 (2004).
[CrossRef]

Fiber Integr. Opt.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integr. Opt. 29, 62–75(2010).
[CrossRef]

J. Micromech. Microeng.

Y. Zu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

J. Mod. Opt.

A. F. Fercher, C. Hitzenberger, and M. Juchen, “Measurement of intraocular optical distances using partially coherent laser light,” J. Mod. Opt. 38, 1327–1333 (1991).
[CrossRef]

J. Opt. Soc. Korea

J. Phys. E

D. Jackson and D. M. Paul, “Measurement of supersonic velocity and turbulence by laser anemometry,” J. Phys. E 4, 173–177 (1971).
[CrossRef]

Meas. Sci. Technol.

I. Balboa, H. D. Ford, and R. P. Tatam, “Low-coherence optical fibre speckle interferometry,” Meas. Sci. Technol. 17, 605–616(2006).
[CrossRef]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949–2957 (2007).
[CrossRef]

D. Stifter, K. Wiesauer, M. Wurm, E. Schlotthauer, J. Kastner, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Investigation of polymer and polymer/fibre composite materials with optical coherence tomography,” Meas. Sci. Technol. 19, 074011 (2008).
[CrossRef]

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, “Study on the use of optical coherence tomography in measurements of paper properties,” Meas. Sci. Technol. 16, 1131–1137(2005).
[CrossRef]

Z.-H. Lu, T. O. H. Charrett, and R. P. Tatam, “Three-component planar velocity measurements using Mach-Zehnder interferometric, filter-based planar Doppler velocimetry (MZI-PDV),” Meas. Sci. Technol. 20, 034019 (2009).
[CrossRef]

D. Francis, S. W. James, and R. P. Tatam, “Surface strain measurement of rotating objects using pulsed laser shearography with coherent fibre-optic imaging bundles,” Meas. Sci. Technol. 19, 105301 (2008).
[CrossRef]

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in-vivo imaging,” Nat. Biotechnol. 21, 1361–1367.
[CrossRef] [PubMed]

Opt. Commun.

N. Ortega-Quijano, F. Fanjul-Vélez, and J. L. Arce-Diego, “Optical crosstalk influence in fiber imaging endoscopes design,” Opt. Commun. 283, 633–638 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338–41 (2004).
[CrossRef]

H. D. Ford and R. P. Tatam, “Full-field optical coherence tomography,” Proc. SPIE 5858, 148–156 (2005).

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Rev. Sci. Instrum.

U. Sharma and J. U. Kang, “Common-path OCT with side-viewing bare fiber probe for endoscopic OCT,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef] [PubMed]

Other

D. Heard, Santec Europe Ltd., Magdalen Centre, Robert Robinson Ave., Oxford Science Park, OX4 4GA (personal communication, 2008).

“GrinTech datasheets,” http://www.grintech.de/downloads.html (Accessed October 2010).

“Coatings,” www.photonicsolutions.co.uk/datasheets/casi/CXCoatings.pdf (Accessed October 2010).

“Wound image bundles,” http://www.schott.com/lightingimaging/english/products/healthcare/imagingfiberoptics/flexiblecomponents/wound.html (Accessed October 2010).

“Image Fiber,” http://www.fujikura.com/prod/imagefiber/p1_1.html (Accessed January 2011).

“Transmitting images,” http://www.schott.com/lightingimaging/english/life-science/medical-products/transmitting-images.html (Accessed October 2010).

K. Gerstner, A. Plichta, D. Schlatterbeck, M. Weisser, P. Brix, M. Sommer, R. Rubino, J. Bonja, R. Strack, I. Henze, and P. Arsenault, “Method of manufacturing a leached fiber bundle,” U.S. patent 7,308,807 (18 December 2007).

K. Bhura, Schott North America, Inc., 122 Charlton Street, Southbridge, Mass. 01550 (personal communication, November 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Configuration 1. Swept-source, common-path OCT system incorporating an imaging fiber bundle, with miniature Michelson interferometer formed at output of bundle. BS, beam splitter; L1, L2, L4, f = 18.5 mm ; L3, f = 8.0 mm .

Fig. 2
Fig. 2

CCD camera views of bundle end faces, under white-light transmission. (a) Image of a sheet of stencils (one “e” partially rubbed away), transmitted through a leached bundle. The magnification in this image is a factor of 5 lower than in the previous three, but the hexagonal pattern of individual fiber cores can still just be distinguished. (b) Wound bundle; pixel size within subbundle is 10 μm . (c) Fused bundle; core diameter approximately 3 μm . (d) Leached fiber bundle used in this study; pixel diameter 10.6 μm , core diameter approximately 8 μm .

Fig. 3
Fig. 3

(a) Construction of a leached fiber bundle, (b) hexagonal close-packed arrangement of fiber cores in the rigid end ferrules.

Fig. 4
Fig. 4

Transmission characteristic of Schott leached bundle (plot provided by Schott North America) up to 1200 nm , for three sets of measurement, represented by square-, diamond-, and triangle-shaped markers, in 760 mm long bundles with 8.4 μm pixels. The superimposed curve is a visual fit added by the authors for greater clarity.

Fig. 5
Fig. 5

(a) Lens arrangement for scanning onto input face of bundle, showing scanning mirror in front focal plane of focusing lens. (b) Telecentric lens arrangement in probe section of optical system; L, lens; f, focal length.

Fig. 6
Fig. 6

(a)–(d) Near-field modal patterns ( M 100 ) and (e)–(h) horizontal profiles through the center of each image, showing the effect of input coupling conditions on modal population for a single core of fiber bundle.

Fig. 7
Fig. 7

Optical interferometer configurations used for low-coherence imaging; BM, beam splitter. (a) Configuration 2, Michelson interferometer using two separate bundles for reference and sample beams. (b) Configuration 3, Fizeau interferometer formed between output end of bundle and sample.

Fig. 8
Fig. 8

Images from system Configuration 1. The samples represented are (a) a 680 μm -wide V-groove in a milled alloy block, (b) a sheet of translucent stencil film, and (c) the first few layers in a reel of adhesive tape. About 60 fibers are used. White bars show 250 μm , width and depth scales.

Fig. 9
Fig. 9

Images from system Configuration 2. The samples represented are (a) a matte, milled metallic surface, (b) a sheet of translucent stencil film, (c) the first few layers in a reel of adhesive tape, and (d), (e) a 680 μm -wide V-groove in a milled alloy block. A correction has been applied to displayed depth positions in all images except for (d). About 60 fibers are used. White bars show 250 μm , width and depth scales. For comparison, a second image of the adhesive tape reel, acquired using our OCT system with a single fiber and a scanning mirror instead of the bundle, is shown in (f). The depth scale for this image is as for the others, but the lateral distance is greater at 6.5 mm .

Fig. 10
Fig. 10

Images from system shown in Configuration 3. The samples represented are (a) a matte, milled metallic surface, (b) a 280 μm -wide V-groove in a milled alloy block, and (c) the first few layers in a reel of adhesive tape. About 60 fibers are used. White bars show 250 μm , width and depth scales.

Fig. 11
Fig. 11

Profile of detected signal after transmission of laser output through (a) a single-mode fiber, (b) a bundle core, with coupling adjusted to minimize artifacts, (c) a bundle core, with coupling adjusted to show more severe occurrence of artifacts. (d)–(f) Corresponding OCT signals, calculated from (a)–(c), respectively.

Fig. 12
Fig. 12

Profile through modal pattern (core spacing 25 camera pixels at this magnification) from fiber core, for optimized input coupling, showing cross coupling of power to nearest-neighbor fibers at (a)  1330 nm and (b)  1550 nm .

Metrics