Abstract

This paper describes a preliminary demonstration and validation of temperature imaging using hyperspectral H2O absorption tomography in controlled experiments. Fifteen wavelengths are monitored on each of 30 laser beams to reconstruct the temperature image in a 381mm×381mm square room- temperature plane that contains a 102mm×102mm square zone of lower or higher temperature. The hyperspectral tomography technique attempts to leverage multispectral information to enhance measurement fidelity. The experimental temperature images exhibit average accuracies of 2.3% or better, with pixel-by-pixel standard deviations of less than 1%. In addition, even when the internal zone is only 4K cooler than the surroundings, its presence is still detectable; statistical analysis of the associated experimental image reveals a 98% confidence that the internal zone is in fact cooler than the surroundings.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of temperature imaging by H2O absorption spectroscopy using compressed sensing tomography

Xinliang An, Mack S. Brittelle, Pascal T. Lauzier, James R. Gord, Sukesh Roy, Guang-Hong Chen, and Scott T. Sanders
Appl. Opt. 54(31) 9190-9199 (2015)

Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy

Lin Ma, Weiwei Cai, Andrew W. Caswell, Thilo Kraetschmer, Scott T. Sanders, Sukesh Roy, and James R. Gord
Opt. Express 17(10) 8602-8613 (2009)

Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor

Andrew W. Caswell, Thilo Kraetschmer, Keith Rein, Scott T. Sanders, Sukesh Roy, Dale T. Shouse, and James R. Gord
Appl. Opt. 49(26) 4963-4972 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription