Abstract

A micro digital in-line holographic particle tracking velocimetry (micro-DHPTV) system has been developed and applied to investigate the three-dimensional flow field in straight and Y-junction microchannels. The micro-DHPTV system comprises a cooled frame-transfer CCD camera and a double-pulsed laser. The processing algorithm introduced to evaluate the three-dimensional velocity is based on the combination of integrated cross-correlation and nearest neighbor matching algorithms, taking advantage of information from both the reconstructed particle field and the original holograms fringes patterns. Tests on simulated pairs of holograms show that the particles can be detected, located, and paired with high probability and accuracy. Results obtained in the straight and Y-junction microchannels show that the superimposed vector field is physically reasonable.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Ho and Y. C. Tai, “Review: MEMS and its applications for flow control,” J. Fluid. Eng. 118, 437–447 (1996).
    [CrossRef]
  2. N. Mahalik, “Principle and applications of MEMS: a review,” IJMTM 13, 324–343 (2008).
  3. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
    [CrossRef]
  4. S. Wereley and C. Meinhart, “Recent advances in micro-particle image velocimetry,” Annual Review Fluid Mechanics 42, 557–576 (2010).
    [CrossRef]
  5. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annual Review Fluid Mechanics 42, 531–555 (2010).
    [CrossRef]
  6. C. T. Yang and H. S. Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry,” Experiments Fluids 39, 385–396 (2005).
    [CrossRef]
  7. S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
    [CrossRef]
  8. S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
    [CrossRef]
  9. S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
    [CrossRef]
  10. S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microengin. 17, 2157–2162 (2007).
    [CrossRef]
  11. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. V. Blaaderen, P. V. Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [CrossRef]
  12. S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Experiments Fluids 46, 255–264 (2009).
    [CrossRef]
  13. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [CrossRef]
  14. R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
    [CrossRef]
  15. S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Experiments Fluids 44, 623–631 (2008).
    [CrossRef]
  16. J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
    [CrossRef]
  17. J. Sheng and H. Meng, “A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry,” Experiments Fluids 25, 461–473 (1998).
    [CrossRef]
  18. G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005).
    [CrossRef]
  19. Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Experiments Fluids 29, 184–197 (2000).
    [CrossRef]
  20. R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
    [CrossRef]

2010 (2)

S. Wereley and C. Meinhart, “Recent advances in micro-particle image velocimetry,” Annual Review Fluid Mechanics 42, 557–576 (2010).
[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annual Review Fluid Mechanics 42, 531–555 (2010).
[CrossRef]

2009 (2)

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Experiments Fluids 46, 255–264 (2009).
[CrossRef]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef]

2008 (4)

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Experiments Fluids 44, 623–631 (2008).
[CrossRef]

J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
[CrossRef]

N. Mahalik, “Principle and applications of MEMS: a review,” IJMTM 13, 324–343 (2008).

2007 (2)

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microengin. 17, 2157–2162 (2007).
[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. V. Blaaderen, P. V. Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[CrossRef]

2006 (2)

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

2005 (3)

C. T. Yang and H. S. Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry,” Experiments Fluids 39, 385–396 (2005).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005).
[CrossRef]

2000 (1)

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Experiments Fluids 29, 184–197 (2000).
[CrossRef]

1999 (1)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
[CrossRef]

1998 (1)

J. Sheng and H. Meng, “A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry,” Experiments Fluids 25, 461–473 (1998).
[CrossRef]

1996 (1)

C. M. Ho and Y. C. Tai, “Review: MEMS and its applications for flow control,” J. Fluid. Eng. 118, 437–447 (1996).
[CrossRef]

1995 (1)

R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
[CrossRef]

Adrian, R.

R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
[CrossRef]

Amato-Grill, J.

Blaaderen, A. V.

Cheong, F. C.

Chuang, H. S.

C. T. Yang and H. S. Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry,” Experiments Fluids 39, 385–396 (2005).
[CrossRef]

Cooper, J.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Di Leonardo, R.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Dixon, L.

Dreyfus, R.

Grier, D. G.

Hiroyuki, K.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

Ho, C. M.

C. M. Ho and Y. C. Tai, “Review: MEMS and its applications for flow control,” J. Fluid. Eng. 118, 437–447 (1996).
[CrossRef]

Ito, T.

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Kanamori, H.

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annual Review Fluid Mechanics 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
[CrossRef]

Kazuho, S.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

Keane, R.

R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
[CrossRef]

Kim, S.

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Experiments Fluids 46, 255–264 (2009).
[CrossRef]

S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Experiments Fluids 44, 623–631 (2008).
[CrossRef]

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microengin. 17, 2157–2162 (2007).
[CrossRef]

Kim, S.-H.

Kunugi, T.

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Leach, J.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Lee, S.

S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Experiments Fluids 44, 623–631 (2008).
[CrossRef]

Lee, S. J.

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Experiments Fluids 46, 255–264 (2009).
[CrossRef]

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microengin. 17, 2157–2162 (2007).
[CrossRef]

Lee, S.-H.

Mahalik, N.

N. Mahalik, “Principle and applications of MEMS: a review,” IJMTM 13, 324–343 (2008).

Malkeil, E.

J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
[CrossRef]

Meinhart, C.

S. Wereley and C. Meinhart, “Recent advances in micro-particle image velocimetry,” Annual Review Fluid Mechanics 42, 557–576 (2010).
[CrossRef]

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
[CrossRef]

Meng, H.

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Experiments Fluids 29, 184–197 (2000).
[CrossRef]

J. Sheng and H. Meng, “A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry,” Experiments Fluids 25, 461–473 (1998).
[CrossRef]

Mushfique, H.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Oostrum, P. V.

Padgett, M.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Pu, Y.

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Experiments Fluids 29, 184–197 (2000).
[CrossRef]

Roichman, Y.

Ruocco, G.

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
[CrossRef]

Satake, S.-I.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Sato, K.

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Shen, G.

G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005).
[CrossRef]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annual Review Fluid Mechanics 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng and H. Meng, “A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry,” Experiments Fluids 25, 461–473 (1998).
[CrossRef]

Sun, B.

Tai, Y. C.

C. M. Ho and Y. C. Tai, “Review: MEMS and its applications for flow control,” J. Fluid. Eng. 118, 437–447 (1996).
[CrossRef]

Takafumi, A.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

Taniguchi, J.

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Tomoaki, K.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

Tomoyoshi, I.

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

Wei, R.

G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005).
[CrossRef]

Wereley, S.

S. Wereley and C. Meinhart, “Recent advances in micro-particle image velocimetry,” Annual Review Fluid Mechanics 42, 557–576 (2010).
[CrossRef]

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
[CrossRef]

Xiao, K.

Yang, C. T.

C. T. Yang and H. S. Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry,” Experiments Fluids 39, 385–396 (2005).
[CrossRef]

Yang, S.-M.

Yi, G.-R.

Zhang, Y.

R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
[CrossRef]

Annual Review Fluid Mechanics (2)

S. Wereley and C. Meinhart, “Recent advances in micro-particle image velocimetry,” Annual Review Fluid Mechanics 42, 557–576 (2010).
[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annual Review Fluid Mechanics 42, 531–555 (2010).
[CrossRef]

Experiments Fluids (7)

C. T. Yang and H. S. Chuang, “Measurement of a microchamber flow by using a hybrid multiplexing holographic velocimetry,” Experiments Fluids 39, 385–396 (2005).
[CrossRef]

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV measurements of a microchannel flow,” Experiments Fluids 27, 414–419 (1999).
[CrossRef]

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Experiments Fluids 46, 255–264 (2009).
[CrossRef]

S. Kim and S. Lee, “Effect of particle number density in in-line digital holographic particle velocimetry,” Experiments Fluids 44, 623–631 (2008).
[CrossRef]

J. Sheng, E. Malkeil, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Experiments Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng and H. Meng, “A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry,” Experiments Fluids 25, 461–473 (1998).
[CrossRef]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Experiments Fluids 29, 184–197 (2000).
[CrossRef]

IJMTM (1)

N. Mahalik, “Principle and applications of MEMS: a review,” IJMTM 13, 324–343 (2008).

J. Fluid. Eng. (1)

C. M. Ho and Y. C. Tai, “Review: MEMS and its applications for flow control,” J. Fluid. Eng. 118, 437–447 (1996).
[CrossRef]

J. Heat Trans. (1)

S.-I. Satake, A. Takafumi, K. Hiroyuki, K. Tomoaki, S. Kazuho, and I. Tomoyoshi, “Measurements of three-dimensional flow in microchannel with complex shape by micro-digital-holographic particle-tracking velocimetry,” J. Heat Trans. 130, 042413 (2008).
[CrossRef]

J. Micromech. Microengin. (1)

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microengin. 17, 2157–2162 (2007).
[CrossRef]

Meas. Sci. Tech. (2)

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Tech. 17, 1647–1651 (2006).
[CrossRef]

R. Keane, R. Adrian, and Y. Zhang, “Super-resolution particle imaging velocimetry,” Meas. Sci. Tech. 6, 754–768 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng. 43, 1039–1055 (2005).
[CrossRef]

Opt. Rev. (1)

S.-I. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a microchannel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442–444 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Illustration of the cross-correlation of the raw holograms (the red circles denote the reconstructed particles).

Fig. 2.
Fig. 2.

Flow chart of procedures of velocity evaluation of DHPIV.

Fig. 3.
Fig. 3.

A pair of simulated holograms (40 particles, CCD with 1024×1024 resolution and 0.1 μm pixel size, recording distance 30 μm, wavelength 532 nm).

Fig. 4.
Fig. 4.

Velocity vector (represented by the arrows) extracted by (a) from nearest-neighbor, (b) cross-correlation, (c) integrated nearest-neighbor and cross-correlation coefficient matching algorithm on the X-Y plane. The red dots correspond to the location of particles used to compute the first hologram while the green dots correspond to the particles locations used to compute the second hologram.

Fig. 5.
Fig. 5.

Superimposed velocity field of the simulated solid body rotation flow, with the length of the arrows proportional to the 3D displacement and the color to the z displacement.

Fig. 6.
Fig. 6.

3D position and displacement errors of reconstructed particles.

Fig. 7.
Fig. 7.

Experimental setup of micro-DHPTV system.

Fig. 8.
Fig. 8.

Hologram of the microchannel flow with a Y-junction. (a) Raw hologram and (b) background deduced hologram, the red crosses representing x, y location of the reconstructed particles).

Fig. 9.
Fig. 9.

3D visualization of the superimposed velocity field of 40 holograms pairs of the straight microchannel.

Fig. 10.
Fig. 10.

Experimental and fitted time averaged velocity distribution in the y-z plane.

Fig. 11.
Fig. 11.

Comparison of the experimental time averaged velocity in z direction with the theoretical parabolic velocity.

Fig. 12.
Fig. 12.

3D visualization of the superimposed velocity field of 40 hologram pairs of the Y-junction microchannel.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Iimage(xi,yi)=1M2HCCD(xiM,yiM),
φ(x,y;z)=Iimage(x,y)gz(x,y)=F1[F(Iimage)F(gz)],
Pi=(xi,yi,zi)=(pΩiIpxppΩiIp,pΩiIpyppΩiIp,pΩiIpzppΩiIp),
{P1,P2,,Pm}={(x1,y1,z1),(x2,y2,z2),,(xm,ym,zm)},
{P1,P2,,Pn}={(x1,y1,z1),(x2,y2,z2),,(xn,yn,zn)}.
(ux,uy,uz)=((xixj)δt,(yiyj)δt,(zizj)δt).
Dij=D(Pi,Pj)=(xixj)2+(yiyj)2+(zizj)2.
Cij=C(Pi,Pj)=MN(WiW¯i)(WjW¯j)[MN(WiW¯i)2][MN(WjW¯j)2],
Rij=CijDij,nor,
ur=ωr×ruz=ωz|r|,

Metrics