Abstract

We fabricate and demonstrate a hollow fiber with multiple embedded cores (MCHF) based on a modified “suspended core-in-tube” preform technique. Its birefringence properties are controlled by the MCHF core’s ovality, which could be controlled by the applied pressure and drawing temperature in the MCHF preform. An in-fiber Mach–Zehnder interferometer with 90.38% visibility is built by fuse-tapering a single-mode fiber to the MCHF, and the splice loss is less than 2dB. We expect that the proposed MCHF has some potential applications in in-fiber interferometers without the polarization-induced fading problem and in the biosensing area.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson, “Monomode optical fibre interferometers for precision measurement,” J. Phys. E 18, 981–1001 (1985).
    [CrossRef]
  2. L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31, 2692–2694 (2006).
    [CrossRef] [PubMed]
  3. X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
    [CrossRef]
  4. O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
    [CrossRef]
  5. L. B. Yuan and X. Wang, “Four-beam single fiber optic interferometer and its sensing characteristics,” Sens. Actuators 138, 9–15 (2007).
    [CrossRef]
  6. L. B. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 750802 (2009).
    [CrossRef]
  7. Z. Liu, F. Bo, L. Wang, F. Tian, and L. Yuan, “Integrated fiber Michelson interferometer based on poled hollow twin-core fiber,” Opt. Lett. 36, 2435–2437 (2011).
    [CrossRef] [PubMed]
  8. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31, 2681–2683 (2006).
    [CrossRef] [PubMed]
  9. I.-K. Hwang, Y.-H. Lee, K. Oh, and D. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12, 1916–1923 (2004).
    [CrossRef] [PubMed]
  10. L. Schenato, M. Park, L. Palmieri, S. Lee, R. Sassi, A. Galtarossa, and K. Oh, “Characterization of a novel dual-core elliptical hollow optical fiber with wavelength decreasing differential group delay,” Opt. Express 18, 20344–20349 (2010).
    [CrossRef] [PubMed]
  11. Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33, 2934–2935 (2008).
    [CrossRef] [PubMed]
  12. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532(2005).
    [CrossRef]
  13. J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
    [CrossRef]
  14. L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
    [CrossRef]
  15. O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
    [CrossRef]
  16. A. D. Kersey, M. J. Marrone, and A. Dandridge, “Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors,” Opt. Lett. 13, 847–849 (1988).
    [CrossRef] [PubMed]
  17. S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical fiber sensors,” Appl. Phys. Lett. 35, 914–917 (1979).
    [CrossRef]
  18. D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
    [CrossRef]
  19. T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
    [CrossRef]
  20. L. Yuan, Z. Liu, and J. Yang, “Coupling characteristics between single-core fiber and multicore fiber,” Opt. Lett. 31, 3237–3239 (2006).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

L. Schenato, M. Park, L. Palmieri, S. Lee, R. Sassi, A. Galtarossa, and K. Oh, “Characterization of a novel dual-core elliptical hollow optical fiber with wavelength decreasing differential group delay,” Opt. Express 18, 20344–20349 (2010).
[CrossRef] [PubMed]

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

2009 (1)

L. B. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 750802 (2009).
[CrossRef]

2008 (2)

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach–Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33, 2934–2935 (2008).
[CrossRef] [PubMed]

2007 (1)

L. B. Yuan and X. Wang, “Four-beam single fiber optic interferometer and its sensing characteristics,” Sens. Actuators 138, 9–15 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2000 (1)

O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
[CrossRef]

1996 (1)

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

1995 (1)

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
[CrossRef]

1988 (1)

1985 (1)

D. A. Jackson, “Monomode optical fibre interferometers for precision measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

1982 (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

1979 (1)

S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical fiber sensors,” Appl. Phys. Lett. 35, 914–917 (1979).
[CrossRef]

1974 (1)

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Arkwright, J. W.

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

Atkins, G. R.

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

Baptista, J. M.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Bo, F.

Bures, J.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
[CrossRef]

Choi, S.

Dandridge, A.

Daxhelet, X.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
[CrossRef]

Douay, M.

O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
[CrossRef]

Duhem, O.

O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
[CrossRef]

Edahiro, T.

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Frazao, O.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Galtarossa, A.

Giallorenzi, T. G.

S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical fiber sensors,” Appl. Phys. Lett. 35, 914–917 (1979).
[CrossRef]

Han, S. R.

Henninot, J. F.

O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
[CrossRef]

Hewlett, S. J.

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

Horiguchi, M.

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Hwang, I.-K.

Jackson, D. A.

D. A. Jackson, “Monomode optical fibre interferometers for precision measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

Jung, Y.

Kersey, A. D.

Kim, S.

Kobelke, J.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Lee, B. H.

Lee, J. W.

Lee, S.

Lee, Y.-H.

Liu, Z.

Maciejko, R.

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
[CrossRef]

Marrone, M. J.

Masuno, K.

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Miyashita, T.

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Moore, D. R.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Oh, K.

Paek, U. C.

Palmieri, L.

Park, M.

Payne, D.

Priest, R. G.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Santos, J. L.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Sassi, R.

Schenato, L.

Schuster, K.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Sheem, S. K.

S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical fiber sensors,” Appl. Phys. Lett. 35, 914–917 (1979).
[CrossRef]

Silva, S. F. O.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Stowe, D. W.

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

Sun, J.

Takahashi, S.

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

Tian, F.

Viegas, J.

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Wang, L.

Wang, X.

L. B. Yuan and X. Wang, “Four-beam single fiber optic interferometer and its sensing characteristics,” Sens. Actuators 138, 9–15 (2007).
[CrossRef]

Wu, B.

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

Yang, J.

Yuan, L.

Yuan, L. B.

L. B. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 750802 (2009).
[CrossRef]

L. B. Yuan and X. Wang, “Four-beam single fiber optic interferometer and its sensing characteristics,” Sens. Actuators 138, 9–15 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical fiber sensors,” Appl. Phys. Lett. 35, 914–917 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. W. Stowe, D. R. Moore, and R. G. Priest, “Polarization fading in fiber interferometric sensors,” IEEE J. Quantum Electron. 18, 1644–1647 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Frazao, S. F. O. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

IEEE Sens. J. (1)

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

J. Appl. Phys. (1)

T. Miyashita, T. Edahiro, S. Takahashi, M. Horiguchi, and K. Masuno, “Eccentric-core glass optical waveguide,” J. Appl. Phys. 45, 808–809 (1974).
[CrossRef]

J. Lightwave Technol. (2)

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23, 524–532(2005).
[CrossRef]

J. W. Arkwright, S. J. Hewlett, G. R. Atkins, and B. Wu, “High-isolation demultiplexing in bend-tuned twin-core fiber,” J. Lightwave Technol. 14, 1740–1745 (1996).
[CrossRef]

J. Phys. E (1)

D. A. Jackson, “Monomode optical fibre interferometers for precision measurement,” J. Phys. E 18, 981–1001 (1985).
[CrossRef]

Opt. Commun. (1)

O. Duhem, J. F. Henninot, M. Douay, “Study of in fiber Mach–Zehnder interferometer based on two spaced 3 dB long period gratings surrounded by a refractive index higher than that of silica,” Opt. Commun. 180, 255–262 (2000).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

X. Daxhelet, J. Bures, and R. Maciejko, “Temperature-independent all-fiber modal interferometer,” Opt. Fiber Technol. 1, 373–376 (1995).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

L. B. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 750802 (2009).
[CrossRef]

Sens. Actuators (1)

L. B. Yuan and X. Wang, “Four-beam single fiber optic interferometer and its sensing characteristics,” Sens. Actuators 138, 9–15 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of the MCHF with two elliptical cores.

Fig. 2
Fig. 2

Configuration of MCHF preform with pressure controller: (a) cross section of core rod, (b) end view of silica tube with a suspended core rod.

Fig. 3
Fig. 3

End view of elliptical core under different temperature and pressure: (a)  1800 ° C and 0 Pa , (b)  2000 ° C and 0 Pa , (c)  2000 ° C and 100 Pa , (d)  2000 ° C and 1000 Pa .

Fig. 4
Fig. 4

(a) Cross section of the MCHF: (i) twin cores, (ii) three cores, (iii) four cores. (b) Refractive index profiles of MCHF with twin cores.

Fig. 5
Fig. 5

Numerical results at λ = 1310 nm : (a) power density of HE 11 x and HE 11 y . The arrows refer to the corresponding electric field vectors. (b) Material birefringence induced by thermal stress and calculated with plain strain approximation.

Fig. 6
Fig. 6

Mode birefringence as a function of wavelength λ at 600 1600 nm under four kinds of geometric size: (1)  2 a = 12 μm , 2 b = 4 μm , d = 0.5 μm , and λ C_fundamental = 1.59 μm ; (2)  2 a = 8 μm , 2 b = 4 μm , d = 0.5 μm , and λ C_fundamental = 1.41 μm ; (3)  2 a = 8 μm , 2 b = 4 μm , d = 1 μm , and λ C_fundamental = 1.53 μm ; (4)  2 a = 8 μm , 2 b = 4 μm , d = 2 μm , and λ C_fundamental = 1.71 μm .

Fig. 7
Fig. 7

(a) Setup of MZI based on two-core MCHF. LD, laser diode. (b) CCD view of MCHF in 1310 nm wavelength: (i) near-field mode distribution, (ii) far-field interference pattern. (c) Power transfer simulation results from single-core fiber coupled to two-core MCHF by the beam propagation method.

Fig. 8
Fig. 8

(a) Grayscale image of fringe pattern. (b) Optical intensity distribution of fringe pattern.

Tables (1)

Tables Icon

Table 1 Drawing Conditions of MCHF

Metrics