Abstract

Optical coherence tomography (OCT) has mostly been used for high-speed volume imaging but its profilometry potentials have not been fully exploited. This paper demonstrates high precision (as good as 50nm) multi-interface profilometry using a Fourier domain OCT system without special antivibration devices. The precision is up to 2 orders of magnitude better than the depth resolution of the OCT. Detailed analysis of the precision achieved for different surfaces is presented. The multi-interface profiles are obtained as a by-product of the tomography data. OCT has the advantage in speed and sensitivity at detecting rough and internal interfaces versus conventional optical profilometry. An application of the technique to the dynamic monitoring of varnish drying on paintlike substrates is demonstrated, which provides a better understanding of the formation of surface roughness. The technique has potential benefits in the fields of art conservation, coatings technology, and soft matter physics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
    [CrossRef]
  4. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).
    [CrossRef]
  5. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
    [CrossRef]
  6. P. Targowski, M. Góra, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 35373 (2006).
    [CrossRef]
  7. H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
    [CrossRef]
  8. A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
    [CrossRef]
  9. K. J. Stout and L. Blunt, Three Dimensional Surface Topography (Penton Press, 2000).
  10. J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).
  11. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara, ed. (Wiley-Interscience, 2007), pp. 547–666.
    [CrossRef]
  12. B. S. Lee and T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  13. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  14. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13, 695–701 (2005).
    [CrossRef] [PubMed]
  15. D. Renlon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2005).
  16. F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
    [CrossRef]
  17. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
    [CrossRef] [PubMed]
  18. R. S. Berns and E. R. de la Rie, “The effect of Refractive Index of a varnish on the appearance of oil paintings,” Stud. Conserv. 48, 73–83 (2003).
  19. M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
    [CrossRef]
  20. J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).
  21. H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).
  22. L. E. Stillwagon and R. G. Larson, “Fundamentals of topographic substrate leveling,” J. Appl. Phys. 63, 5251–5258(1988).
    [CrossRef]
  23. M. D. Bullwinkel, J. Gu, and G. A. Campbell, “The effect of drying rate on film leveling over an uneven substrate surface,” in ANTEC ’97—Plastics Saving Planet Earth, Conference Proceedings (SPE, 1997), Vols  1–3, pp. 2227–2230.
  24. S. Lawman and H. Liang, “Fourier domain optical coherence tomography for high-precision profilometry,” Proc. SPIE 7391, 73910H (2009).
    [CrossRef]
  25. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
    [CrossRef] [PubMed]
  26. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in Optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010).
    [CrossRef] [PubMed]
  27. T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
    [CrossRef]
  28. J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts & Company, 2007).
  29. M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
    [CrossRef]
  30. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
    [CrossRef] [PubMed]
  31. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
    [CrossRef] [PubMed]
  32. P. H. Tomlins, P. Wooliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33, 2272–2274 (2008).
    [CrossRef] [PubMed]
  33. J. V. Koleske, Paint and Coating Testing Manual: Fourteenth Edition of the Gardner-Sward Handbook (ASTM, 1995).
    [CrossRef]

2010 (2)

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in Optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18, 2782–2796 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48, 6708–6715 (2009).
[CrossRef] [PubMed]

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

S. Lawman and H. Liang, “Fourier domain optical coherence tomography for high-precision profilometry,” Proc. SPIE 7391, 73910H (2009).
[CrossRef]

2008 (4)

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

P. H. Tomlins, P. Wooliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33, 2272–2274 (2008).
[CrossRef] [PubMed]

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

2007 (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

2006 (2)

P. Targowski, M. Góra, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 35373 (2006).
[CrossRef]

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

2005 (4)

T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13, 695–701 (2005).
[CrossRef] [PubMed]

D. Renlon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2005).

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

2004 (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

2003 (2)

R. S. Berns and E. R. de la Rie, “The effect of Refractive Index of a varnish on the appearance of oil paintings,” Stud. Conserv. 48, 73–83 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2002 (1)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

1995 (2)

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

1988 (1)

L. E. Stillwagon and R. G. Larson, “Fundamentals of topographic substrate leveling,” J. Appl. Phys. 63, 5251–5258(1988).
[CrossRef]

Alarousu, E.

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

Amaral, M. M.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Beaumont, A.

Bennett, J. M.

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

Berns, R. S.

R. S. Berns and E. R. de la Rie, “The effect of Refractive Index of a varnish on the appearance of oil paintings,” Stud. Conserv. 48, 73–83 (2003).

Blunt, L.

K. J. Stout and L. Blunt, Three Dimensional Surface Topography (Penton Press, 2000).

Bouma, B. E.

Brezinski, M. E.

Brun, G.

Bruning, J. H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara, ed. (Wiley-Interscience, 2007), pp. 547–666.
[CrossRef]

Bullwinkel, M. D.

M. D. Bullwinkel, J. Gu, and G. A. Campbell, “The effect of drying rate on film leveling over an uneven substrate surface,” in ANTEC ’97—Plastics Saving Planet Earth, Conference Proceedings (SPE, 1997), Vols  1–3, pp. 2227–2230.

Caly, J. P.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Campbell, G. A.

M. D. Bullwinkel, J. Gu, and G. A. Campbell, “The effect of drying rate on film leveling over an uneven substrate surface,” in ANTEC ’97—Plastics Saving Planet Earth, Conference Proceedings (SPE, 1997), Vols  1–3, pp. 2227–2230.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Charron, E.

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

Cid, M. G.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Coupland, J. M.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Cucu, R.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Cupitt, J.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Czajkowski, J.

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

da la Rie, E. R.

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

de la Rie, E. R.

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

R. S. Berns and E. R. de la Rie, “The effect of Refractive Index of a varnish on the appearance of oil paintings,” Stud. Conserv. 48, 73–83 (2003).

Delaney, J. K.

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

Dobre, G.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Dresel, T.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).
[CrossRef]

Elias, M.

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

Endo, T.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freitas, A. Z.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).
[CrossRef]

Gao, F.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts & Company, 2007).

Góra, M.

P. Targowski, M. Góra, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 35373 (2006).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Gu, J.

M. D. Bullwinkel, J. Gu, and G. A. Campbell, “The effect of drying rate on film leveling over an uneven substrate surface,” in ANTEC ’97—Plastics Saving Planet Earth, Conference Proceedings (SPE, 1997), Vols  1–3, pp. 2227–2230.

Hart, C.

Häusler, G.

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Hizenberger, C. K.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, M.

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Itoh, M.

Jacquot, M.

Kamp, G.

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

Koleske, J. V.

J. V. Koleske, Paint and Coating Testing Manual: Fourteenth Edition of the Gardner-Sward Handbook (ASTM, 1995).
[CrossRef]

Kudimov, B.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Larson, R. G.

L. E. Stillwagon and R. G. Larson, “Fundamentals of topographic substrate leveling,” J. Appl. Phys. 63, 5251–5258(1988).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lawman, S.

S. Lawman and H. Liang, “Fourier domain optical coherence tomography for high-precision profilometry,” Proc. SPIE 7391, 73910H (2009).
[CrossRef]

Leach, R. K.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Lee, B. S.

Liang, H.

S. Lawman and H. Liang, “Fourier domain optical coherence tomography for high-precision profilometry,” Proc. SPIE 7391, 73910H (2009).
[CrossRef]

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Makita, S.

Marcos, S.

Mattson, L.

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

Morales, K. M.

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

Myllyla, R.

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

Ortiz, S.

Pascual, D.

Pedro, J.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Peric, B.

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Petzing, J.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Podoleanu, A.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Prykäri, T.

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Raele, M. P.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Remon, L.

Renlon, D.

Roehrs, S.

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Samad, R. E.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Saunders, D.

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Schreiber, H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara, ed. (Wiley-Interscience, 2007), pp. 547–666.
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Siedlecki, D.

Southern, J. F.

Spring, M.

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

Stillwagon, L. E.

L. E. Stillwagon and R. G. Larson, “Fundamentals of topographic substrate leveling,” J. Appl. Phys. 63, 5251–5258(1988).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stout, K. J.

K. J. Stout and L. Blunt, Three Dimensional Surface Topography (Penton Press, 2000).

Strand, T. C.

Sung, L. P.

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Targowski, P.

P. Targowski, M. Góra, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 35373 (2006).
[CrossRef]

Tearney, G. J.

Tedaldi, M.

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Tomlins, P. H.

P. H. Tomlins, P. Wooliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33, 2272–2274 (2008).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Veillas, C.

Venzke, H.

Verrier, I.

Vieira, N. D.

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Wang, X.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Wojtkowski, M.

Wooliams, P.

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Zhang, C.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[CrossRef]

J. Appl. Phys. (1)

L. E. Stillwagon and R. G. Larson, “Fundamentals of topographic substrate leveling,” J. Appl. Phys. 63, 5251–5258(1988).
[CrossRef]

J. Biomed. Opt. (1)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7, 628–632 (2002).
[CrossRef] [PubMed]

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Laser Chem. (1)

P. Targowski, M. Góra, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 35373 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2008).
[CrossRef]

Opt. Commun. (2)

M. Elias, E. R. da la Rie, J. K. Delaney, E. Charron, and K. M. Morales, “Modification of the surface state of rough substrates by two different varnishes and influence on the reflected light,” Opt. Commun. 266, 586–591 (2006).
[CrossRef]

A. F. Fercher, C. K. Hizenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48(1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Rev. (1)

T. Prykäri, J. Czajkowski, E. Alarousu, and R. Myllyla, “Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry,” Opt. Rev. 17, 218–222 (2010).
[CrossRef]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277–1294(2004).
[CrossRef] [PubMed]

Proc. SPIE (4)

S. Lawman and H. Liang, “Fourier domain optical coherence tomography for high-precision profilometry,” Proc. SPIE 7391, 73910H (2009).
[CrossRef]

M. M. Amaral, M. P. Raele, J. P. Caly, R. E. Samad, N. D. Vieira, and A. Z. Freitas, “Roughness measurement methodology according to DIN 4768 using optical coherence tomography (OCT)” Proc. SPIE 7390, 73900Z (2009).
[CrossRef]

H. Liang, B. Peric, M. Hughes, A. G. Podoleanu, M. Spring, and S. Roehrs, “Optical coherence tomography in archaeological and conservation science—a new emerging field,” Proc. SPIE 7139, 713915 (2008).
[CrossRef]

H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” Proc. SPIE 5857, 261–269 (2005).

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stud. Conserv. (2)

R. S. Berns and E. R. de la Rie, “The effect of Refractive Index of a varnish on the appearance of oil paintings,” Stud. Conserv. 48, 73–83 (2003).

J. K. Delaney, E. R. de la Rie, M. Elias, L. P. Sung, and K. M. Morales, “The role of varnishes in modifying light reflection from rough surfaces,” Stud. Conserv. 53, 170–186(2008).

Other (7)

M. D. Bullwinkel, J. Gu, and G. A. Campbell, “The effect of drying rate on film leveling over an uneven substrate surface,” in ANTEC ’97—Plastics Saving Planet Earth, Conference Proceedings (SPE, 1997), Vols  1–3, pp. 2227–2230.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).
[CrossRef]

K. J. Stout and L. Blunt, Three Dimensional Surface Topography (Penton Press, 2000).

J. M. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering (Optical Society of America, 1989).

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D.Malacara, ed. (Wiley-Interscience, 2007), pp. 547–666.
[CrossRef]

J. V. Koleske, Paint and Coating Testing Manual: Fourteenth Edition of the Gardner-Sward Handbook (ASTM, 1995).
[CrossRef]

J. W. Goodman, Speckle Phenomena in Optics, Theory and Applications (Roberts & Company, 2007).

Supplementary Material (1)

» Media 1: AVI (704 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A Gaussian fit (solid curve) to the five central data points across an air/glass interface. The peak position found by the Gaussian fit is shown by the dashed line. (b) Measured rms error of the surface profile of a standard flat surface as a function of the number of frames averaged before fitting.

Fig. 2
Fig. 2

(a) SROCT image of a sinusoidal surface of 1.5 μm peak-to-peak amplitude and 50 μm period; (b) Surface profile measured with SROCT (black dots) and a sinusoidal fit to the measurement (solid red curve); (c) Surface profile of the same sine surface measured with a Veeco inc. Wyko NT1100 WLI (black dots) and a sinusoidal fit to measurement (solid red curve).

Fig. 3
Fig. 3

(a) SROCT image of a droplet of Regalrez 1094 dissolved in white spirit on a flat microscope slide; (b) Positions found from (a) including extrapolation of the real position of the microscope slide beneath the droplet; (c) Measurement of refractive indices of a drying droplet carried out at five minute intervals for 30 minutes, using only data points around the position that the beam is normal to the droplet surface. Error bars of 1 standard deviation are shown.

Fig. 4
Fig. 4

(a) Profile of coarse glass substrate measured before (solid black line) and after (red dots) deposition of a varnish solution of Regalrez dissolved in white spirit over half the measured surface profile. The varnish surface is shown by a dashed red curve. The substrate profile below the varnish was recovered by assuming a refractive index of 1.49; (b) Difference between the before and after profiles of the rough glass substrate.

Fig. 5
Fig. 5

The rms difference between the corrected refractive index varnish/substrate interface measurements and the reference measurement before the deposition of the varnish is shown as a function of the assumed refractive index of the varnish for four independent measurements (solid curves). The dotted vertical line shows the measured refractive index of the varnish from Section 4A. The horizontal solid line shows the measured speckle error of the substrate surface using the method detailed in Section 3C. The dashed lines are the ± 1 σ boundaries of this measurement.

Fig. 6
Fig. 6

Time evolution of the measured surface profile (thick black lines) of a drying AYAT varnish at 10 s , 3 min 40 s , 7 min 10 s , and 14 min since the application of the varnish and the profile of the rough glass substrate (thin black line). The corresponding theoretical time evolution of the varnish surface profiles are given in thin green (or gray) curves. (media 1).

Fig. 7
Fig. 7

PSDs of final surface profile measurements and models of two varnishes applied on similar substrates. The measured PSD of Regalrez varnish surface is shown by the thin solid black line, the modeled PSD is shown by the thin black dashed line and the PSD of vibrational noise is given by the gray dashed line. The measured PSD of AYAT is shown by the thick red (or black) line and the modeled PSD is given by the dashed thick magenta (or gray) line. The mean PSD of the two corresponding substrate profiles is shown by the thin light green (or gray) line.

Fig. 8
Fig. 8

(a) The time evolution of the modeled (green or gray lines) and measured (black line) raw rms roughness of the surface profile of a drying AYAT varnish coating for the spatial frequencies > 1 mm 1 (thin line), < 1 mm 1 (thick line) and the full spatial frequency range (medium thickness line) are shown separately; (b) The same as part (a) for a drying Regalrez coating; (c) The time evolution of the measured (black lines) cross-correlation coefficient between the surface and substrate profile of the drying AYAT varnish for the spatial frequencies > 1 mm 1 (thin line), < 1 mm 1 (thick line) are shown separately; the expected ± 1 σ bounds of the modeled profiles with vibrational noise are shown in thin green (or gray) lines for the spatial frequencies > 1 mm 1 and in thick green (or gray) lines for frequencies < 1 mm 1 ; (d) The same as part (c) for the drying Regalrez coating; (e) Measured (black lines) and modeled (green or gray line) varnish thickness versus time for AYAT; (f) Varnish thickness versus time for Regalrez.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ Φ ( x ) = Δ h ( x ) = { 1 3 γ η ( C ( x ) ) Δ Δ x [ ( Δ 3 Φ ( x ) Δ x 3 ) h ( x ) 3 ] + E ( C ( x ) ) } Δ t ,

Metrics