Abstract

We present a refractive index (RI) sensor based on a fiber Mach–Zehnder interferometer (MZI) formed by two cascaded special long-period fiber gratings (LPFGs) with rotary refractive index modulation (RLPFGs), in which the coupling occurred between the guided mode and the high-order asymmetric cladding mode. The experimental results show that the RI sensitivity of a refractometer with an interaction length of 40mm is up to 58.8nm/RI in the range of 1.3344 to 1.3637, which is 3.5 times higher than that of an MZI formed by two normal LPFGs. The temperature sensitivity for the same parameters of an RLPFG-MZI is about 0.03nm/°C. Such a kind of high-sensitivity, easy-to-fabricate and simple-structure interferometer may find applications in the chemical or biochemical sensing fields.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Kim, F. S. Shen, X. P. Chen, and A. B. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor,” Opt. Lett. 30 (22), 3000–3002 (2005).
    [CrossRef] [PubMed]
  2. J.-M. Gagné, M. Giroux, and J.-P. Saint-Dizier, “Refractometer associated with the Fabry–Perot spectrometer,” Appl. Opt. 12, 522–527 (1973).
    [CrossRef] [PubMed]
  3. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry–Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16, 2252–2263(2008).
    [CrossRef] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
    [CrossRef]
  5. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319–1321 (2006).
    [CrossRef] [PubMed]
  6. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413–11426(2007).
    [CrossRef] [PubMed]
  7. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004).
    [CrossRef]
  8. G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001).
    [CrossRef]
  9. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett. 30, 2363–2365(2005).
    [CrossRef] [PubMed]
  10. T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005).
    [CrossRef]
  11. A. Iadicicco, S. Campopiano, M. Giordano, and A. Cusano, “Spectral behavior in thinned long-period gratings: effects of fiber diameter on refractive index sensitivity,” Appl. Opt. 46, 6945–6952 (2007).
    [CrossRef] [PubMed]
  12. A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
    [CrossRef]
  13. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long-period gratings,” Opt. Express 14, 19–34 (2006).
    [CrossRef] [PubMed]
  14. J. Yang, L. Yang, C.-Q. Xu, and Y. Li, “Optimization of cladding-structure-modified long-period-grating refractive-index sensors,” J. Lightwave Technol. 25, 372–380 (2007).
    [CrossRef]
  15. S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
    [CrossRef]
  16. K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
    [CrossRef]
  17. L. Rindor, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
    [CrossRef]
  18. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
    [CrossRef]
  19. T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2laser in twisted single-mode fibers,” J. Lightwave Technol. 27, 4863–4869 (2009).
    [CrossRef]
  20. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38, 3450–3459 (1999).
    [CrossRef]
  21. K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
    [CrossRef] [PubMed]
  22. E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

2010 (1)

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (3)

2006 (3)

2005 (5)

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005).
[CrossRef]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett. 30, 2363–2365(2005).
[CrossRef] [PubMed]

D. W. Kim, F. S. Shen, X. P. Chen, and A. B. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry–Perot interferometer sensor,” Opt. Lett. 30 (22), 3000–3002 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

2004 (2)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004).
[CrossRef]

K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
[CrossRef] [PubMed]

2001 (2)

G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001).
[CrossRef]

S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
[CrossRef]

2000 (1)

K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[CrossRef]

1999 (1)

1996 (1)

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

1973 (1)

Arregui, F. J.

Bang, O.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004).
[CrossRef]

Campopiano, S.

Chen, X. P.

Chiang, K. S.

Chung, K. W.

K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
[CrossRef] [PubMed]

S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
[CrossRef]

Contessa, L.

Cusano, A.

Cutolo, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long-period gratings,” Opt. Express 14, 19–34 (2006).
[CrossRef] [PubMed]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004).
[CrossRef]

Del Villar, I.

Dianov, E. M.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

Dong, X. Y.

K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[CrossRef]

Dufva, M.

Fan, X.

Fehri, M. Fassi

Ferdinand, P.

G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001).
[CrossRef]

Gagné, J.-M.

Gauvreau, B.

Giordano, M.

Giroux, M.

Hassani, A.

He, S.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

Høiby, P. E.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Iadicicco, A.

Jensen, J. B.

Kabashin, A.

Kim, D. W.

Kurkov, A. S.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Laffont, G.

G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001).
[CrossRef]

Lee, B. H.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Liao, X.

Liu, M.

Liu, W. J.

Liu, Y. Q.

K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[CrossRef]

Martinez-Rios, A.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Matias, I. R.

Medvedkov, O. J.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Mo, Q. J.

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005).
[CrossRef]

Monzon-Hernandez, D.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Ng, M. N.

K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[CrossRef]

Nishii, J.

Oveys, H.

Pedersen, L. H.

Pilla, P.

Protopopov, V. N.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Ran, Z. L.

Rao, Y. J.

Rindor, L.

Saint-Dizier, J.-P.

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

Shen, F. S.

Shi, C. H.

Skorobogatiy, M. A.

Torres-Gomez, I.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

Vasiliev, S. A.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Wang, A. B.

White, I. M.

Xu, C.-Q.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

Yang, J.

Yang, L.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Yin, S.

K. W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling,” Opt. Lett. 29, 812–814 (2004).
[CrossRef] [PubMed]

S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
[CrossRef]

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

Zhu, T.

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, and M. Liu, “Characterization of long-period fiber gratings written by CO2laser in twisted single-mode fibers,” J. Lightwave Technol. 27, 4863–4869 (2009).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005).
[CrossRef]

Zhu, X.

S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122-1–151122-3 (2005).
[CrossRef]

Electron. Lett. (1)

K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, “Analysis of etched long-period fiber grating and its response to external refractive index,” Electron. Lett. 36, 966–967 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon. Technol. Lett. 17, 1247–1249 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high-sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151(2004).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett. 17, 2700–2702 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Titled short-period fiber Bragg grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770(2001).
[CrossRef]

Opt. Commun. (2)

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283, 958–962 (2010).
[CrossRef]

S. Yin, K. W. Chung, and X. Zhu, “A highly sensitive long-period-grating-based tunable filter using a unique double-cladding layer structure,” Opt. Commun. 188, 301–305(2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (1)

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. J. Medvedkov, and V. N. Protopopov, “In-fiber Mach–Zehnder interferometer based on a pair of long-period gratings,” Proceedings of European Conference on Optical Communication (ECOC) (IEEE, 1996), pp. 65–68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the RLPFG-MZI.

Fig. 2
Fig. 2

Near-field images of the single RLPFG: (a) and (b)  3D and 2D images for RLPFG with four twisting turns, (c) and (d) 3D and 2D images for RLPFG with eight twisting turns, (e) and (f) transmission spectra of individual RLPFGs with four and eight twisting turns, respectively.

Fig. 3
Fig. 3

RLPFG-MZI with eight twisting turns: (a) spectrum of MZI in air ( 0 mm ) and deionized water ( 40 mm ), (b) relationship between fringe shift versus immersion length.

Fig. 4
Fig. 4

Comparison of wavelength shift owing to different RI between the theoretical results and the experimental results: (a) RLPFG-MZI with four twisting turns, (b) RLPFG-MZI with eight twisting turns.

Fig. 5
Fig. 5

Temperature response: (a) RLPFG-MZI with four twisting turns, (b) RLPFG-MZI with eight twisting turns.

Tables (1)

Tables Icon

Table 1 Effective RI of Cladding Modes LP 2 m versus the Different Surrounding RI

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ m = 2 π Δ n eff m L λ ,
I = I 1 + I 2 + 2 I 1 I 2 cos ( Φ m ) ,
λ n = 2 π Δ n eff m L / ( 2 n + 1 ) π ,
δ λ n = 2 δ n eff m l / ( 2 n + 1 ) ,

Metrics