Abstract

Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann–Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6LP/mm, and the human eye wavefront aberration of 0.728λ (λ=785nm) can be corrected to 0.081λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  2. J. Z. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of the wave aberrations of human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  3. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  4. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2891 (1997).
    [CrossRef]
  5. L. J. Zhu, P. C. Sun, D. U. Bartsch, R. F. Williams, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Performance of the Rochester 2nd generation adaptive optics system for the eye,” Opt. Express 8, 631–643(2001).
    [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. W. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412(2002).
    [PubMed]
  8. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef] [PubMed]
  9. N. Ling, Y. D. Zhang, X. J. Rao, C. Wang, Y. Y. Hu, and W. H. Jiang, “High resolution mosaic image of capillaries of human retina by adaptive optics,” Chin. Opt. Lett. 3, 225–226(2005).
  10. R. J. Zawadzki, S. M. Jones, S. S. Choi, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [CrossRef] [PubMed]
  11. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics—optical coherence tomography,” Opt. Express 17, 4084–4094 (2009).
    [CrossRef] [PubMed]
  12. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18, 11607–11621 (2010).
    [CrossRef] [PubMed]
  13. K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express 18, 1406–1418 (2010).
    [CrossRef] [PubMed]
  14. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18, 8515–8527 (2010).
    [CrossRef] [PubMed]
  15. S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
    [CrossRef]
  16. M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
    [CrossRef]
  17. B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009).
    [CrossRef]
  18. R. Z. Zhou, “Correction mode adaptive optics system,” in Adaptive Optics (Academic, 1996), pp. 270–301.
  19. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  20. H. J. Caulfield, J. Shamir, J. E. Ludman, and P. Greguss, “Reversibility and energetics in optical computing,” Opt. Lett. 15, 912–914 (1990).
    [CrossRef] [PubMed]
  21. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  22. S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
    [CrossRef]
  23. X. M. Yin, X. Li, L. P. Zhao, and Z. P. Fang, “Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack–Hartmann wavefront sensor,” Appl. Opt. 48, 6088–6098 (2009).
    [CrossRef] [PubMed]
  24. C. Liang, Research on Technology of Wavefront Reconstruction for Human Retina Cell Imaging (Academic, 2009).
  25. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).
  26. X. Y. Li, Optimization of Modal Reconstruction Algorithm and Control Algorithm in Adaptive Optics System (Academic, 2000).
  27. N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
    [CrossRef]
  28. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
    [CrossRef] [PubMed]
  29. D. Ferrario and F. Wildi, “Nulling interferometry and adaptive optics control system optimization,” Proc. SPIE 5905, 237–248(2005).
    [CrossRef]
  30. R. C. Flicker and F. J. Rigaut, “Anisoplanatic deconvolution of adaptive optics images,” J. Opt. Soc. Am. A 22, 504–513 (2005).
    [CrossRef]
  31. G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009).
    [CrossRef]

2010

2009

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics—optical coherence tomography,” Opt. Express 17, 4084–4094 (2009).
[CrossRef] [PubMed]

X. M. Yin, X. Li, L. P. Zhao, and Z. P. Fang, “Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack–Hartmann wavefront sensor,” Appl. Opt. 48, 6088–6098 (2009).
[CrossRef] [PubMed]

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009).
[CrossRef]

C. Liang, Research on Technology of Wavefront Reconstruction for Human Retina Cell Imaging (Academic, 2009).

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009).
[CrossRef]

2007

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

2005

2004

2003

2002

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. W. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412(2002).
[PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

2001

2000

1999

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

L. J. Zhu, P. C. Sun, D. U. Bartsch, R. F. Williams, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
[CrossRef]

1997

1996

R. Z. Zhou, “Correction mode adaptive optics system,” in Adaptive Optics (Academic, 1996), pp. 270–301.

1994

1991

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

1990

1953

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Baik, S. H.

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Bartsch, D. U.

Bille, J.

Booth, M. J.

B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009).
[CrossRef]

Bower, B. A.

Bright, V. M.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Campbell, M. W. C.

Carbillet, M.

G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009).
[CrossRef]

Caulfield, H. J.

Cense, B.

Cha, B.

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Chen, L.

Choi, S.

Choi, S. S.

Cowan, W. D.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Dainty, C.

Desidera, G.

G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009).
[CrossRef]

Diaz-Santana, L.

Doelman, N.

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

Donnelly, W. J.

Drexler, W.

Evans, J. W.

Fainman, Y.

Fang, Z. P.

Fercher, A. F.

Ferguson, R. D.

Fernandez, E. J.

Ferrario, D.

D. Ferrario and F. Wildi, “Nulling interferometry and adaptive optics control system optimization,” Proc. SPIE 5905, 237–248(2005).
[CrossRef]

Flicker, R. C.

Fraanje, R.

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

Fuller, A. R.

Gasson, P.

Goelz, S.

Greguss, P.

Grimm, B.

Hamann, B.

Hammer, D. X.

Hebert, T. J.

Hermann, B.

Hofer, H.

Houtzager, L.

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

Hu, Y. Y.

Iftimia, N.

Izatt, J. A.

Jiang, W. H.

Jones, S. M.

Kim, C. J.

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Kurokawa, K.

Laut, S.

Lee, M.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Li, B. M.

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

Li, X.

Li, X. Y.

X. Y. Li, Optimization of Modal Reconstruction Algorithm and Control Algorithm in Adaptive Optics System (Academic, 2000).

Liang, C.

C. Liang, Research on Technology of Wavefront Reconstruction for Human Retina Cell Imaging (Academic, 2009).

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

Liang, J. Z.

Ling, N.

Ludman, J. E.

Lue, N.

Makita, S.

Miller, D. T.

Mujat, M.

Munro, I.

Niu, S. S.

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

Park, S. K.

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Patel, A. H.

Prieto, P. M.

Queener, H.

Rao, X. J.

Rigaut, F. J.

Roggemann, M. C.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Romero-Borja, F.

Roorda, A.

Sasaki, K.

Sattmann, H.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Shamir, J.

Shen, J. X.

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

Singer, B.

Sun, P. C.

Tamada, D.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Torti, C.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

Unterhuber, A.

Vargas-Martin, F.

Verhaeqen, M.

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

Wang, B. R.

B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009).
[CrossRef]

Wang, C.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Welsh, B. M.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Werner, J. S.

Wildi, F.

D. Ferrario and F. Wildi, “Nulling interferometry and adaptive optics control system optimization,” Proc. SPIE 5905, 237–248(2005).
[CrossRef]

Williams, D. R.

Williams, R. F.

Yamanari, M.

Yamauchi, Y.

Yasuno, Y.

Yin, X. M.

Yoon, G. Y.

Zawadzki, R. J.

Zhang, Y. D.

Zhao, L. P.

Zhao, M. T.

Zhou, R. Z.

R. Z. Zhou, “Correction mode adaptive optics system,” in Adaptive Optics (Academic, 1996), pp. 270–301.

Zhu, L. J.

Appl. Opt.

Astron. Astrophys.

G. Desidera and M. Carbillet, “Strehl-constrained iterative blind deconvolution for post-adaptive-optics data,” Astron. Astrophys. 507, 1759–1762 (2009).
[CrossRef]

Chin. Opt. Lett.

Eur. J. Control

N. Doelman, R. Fraanje, L. Houtzager, and M. Verhaeqen, “Adaptive and real-time optimal control for adaptive optics systems,” Eur. J. Control 15, 480–488 (2009).
[CrossRef]

IEEE Eng. Med. Biol.

S. S. Niu, J. X. Shen, C. Liang, and B. M. Li, “Human eye aberration measurement and correction based on micro adaptive optics system,” IEEE Eng. Med. Biol. 3, 1023–1207 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Refract. Surg.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, 652–660 (2002).

Opt. Commun.

B. R. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009).
[CrossRef]

Opt. Express

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Performance of the Rochester 2nd generation adaptive optics system for the eye,” Opt. Express 8, 631–643(2001).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. W. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412(2002).
[PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11, 2597–2605 (2003).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Choi, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef] [PubMed]

K. Kurokawa, D. Tamada, S. Makita, and Y. Yasuno, “Adaptive optics retinal scanner for one-micrometer light source,” Opt. Express 18, 1406–1418 (2010).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18, 8515–8527 (2010).
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18, 11607–11621 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics—optical coherence tomography,” Opt. Express 17, 4084–4094 (2009).
[CrossRef] [PubMed]

Opt. Laser Technol.

S. H. Baik, S. K. Park, C. J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

M. C. Roggemann, V. M. Bright, B. M. Welsh, W. D. Cowan, and M. Lee, “Micro-electro-mechanical deformable mirrors for aberration control in optical systems,” Opt. Quantum Electron. 31, 451–468 (1999).
[CrossRef]

Proc. SPIE

D. Ferrario and F. Wildi, “Nulling interferometry and adaptive optics control system optimization,” Proc. SPIE 5905, 237–248(2005).
[CrossRef]

Publ. Astron. Soc. Pac.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Other

X. Y. Li, Optimization of Modal Reconstruction Algorithm and Control Algorithm in Adaptive Optics System (Academic, 2000).

R. Z. Zhou, “Correction mode adaptive optics system,” in Adaptive Optics (Academic, 1996), pp. 270–301.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

C. Liang, Research on Technology of Wavefront Reconstruction for Human Retina Cell Imaging (Academic, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Principles of wavefront compensation.

Fig. 2
Fig. 2

Principles of HSWS.

Fig. 3
Fig. 3

Human eye spot pattern and centroid position.

Fig. 4
Fig. 4

Offsets of centroids with different threshold levels.

Fig. 5
Fig. 5

Structure and electrodes’ distribution of MMDM.

Fig. 6
Fig. 6

Dynamic block diagram of control model.

Fig. 7
Fig. 7

Equivalent simplification block of control model.

Fig. 8
Fig. 8

Block of control model based on Smith compensation.

Fig. 9
Fig. 9

Bode diagram of closed-loop transfer function without Smith compensator.

Fig. 10
Fig. 10

Bode diagram of closed-loop transfer function with Smith compensator.

Fig. 11
Fig. 11

Schematic diagram of adaptive optical imaging system. Aberration light source, used for aberration measurement, wavelength is 785 nm ; imaging light source, used for retina imaging, wavelength is 630 n m ; fixation target, liquid crystal box with flicker to induce eye; BS#, pellicle beam splitter reflects 50% and transmits 50%; M#, reflecting flat mirrors; shutter, electronic shutter used for controlling the light to illuminate retina; compensate lens, used for pre-correction of defocus and astigmatism; aperture match system #, adjusts the light aperture to fit other equipment; deformable mirror, OKO, 37-channel, Al-coated membrane, 0 500 Hz ; H-S wavefront sensor, 127 units, hexagonal lenslet layout, BASLER S601 camera, maximum frame rate is 60 fps ; retina imaging CCD, CoolSNAP cf2; monitoring CCD, HITACHI KP-M2R.

Fig. 12
Fig. 12

Test pattern of imaging system’s resolution.

Fig. 13
Fig. 13

Time course of aberration correction.

Fig. 14
Fig. 14

Compared results before and after aberration correction. (a) Interference pattern of aberration before correction, RMS is 0.728 λ 1 ( λ 1 = 785 n m ); (b) PSF before correction; (c) retina image before correction; (d) interference pattern of aberration after correction, RMS is 0.081 λ 1 ; (e) PSF after correction, and Strehl ratio is 0.866; (f) retina image after correction, scale as shown is 44 μ m .

Tables (1)

Tables Icon

Table 1 Correction Results (Average RMS and PV) of Different Subjects

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

x i c = p = 1 X q = 1 Y ( V i ( p , q ) V i n ) H i ( p , q ) · p p = 1 X q = 1 Y ( V i ( p , q ) V i n ) H i ( p , q ) y i c = p = 1 X q = 1 Y ( V i ( p , q ) V i n ) H i ( p , q ) · q p = 1 X q = 1 Y ( V i ( p , q ) V i n ) H i ( p , q ) .
H i ( p , q ) = { 1 , V i ( p , q ) V i n 0 , V i ( p , q ) < V i n .
Δ = ( x i c n x i c n + 1 ) 2 + ( y i c n y i c n + 1 ) 2 .
φ ( x , y ) = φ s ( x , y ) + ε H = i = 1 c i Z i ( x , y ) + ε H ,
φ ( x , y ) / x = Δ x / f = ( x c x o ) / f φ ( x , y ) / y = Δ y / f = ( y c y o ) / f ,
φ ( x , y ) / x = c 1 Z 1 ( x , y ) / x + c 2 Z 2 ( x , y ) / x + + c n Z n ( x , y ) / x φ ( x , y ) / y = c 1 Z 1 ( x , y ) / y + c 2 Z 2 ( x , y ) / y + + c n Z n ( x , y ) / y .
DC = g .
g = [ Δ x 1 / f , Δ x 2 / f , , Δ x m / f , Δ y 1 / f , Δ y 2 / f , Δ y m / f ] T ,
D = [ z 1 ( x , y ) / x | ( x 1 , y 1 ) z 2 ( x , y ) / x | ( x 1 , y 1 ) z n ( x , y ) / x | ( x 1 , y 1 ) z 1 ( x , y ) / x | ( x m , y m ) z 2 ( x , y ) / x | ( x m , y m ) z n ( x , y ) / x | ( x m , y m ) z 1 ( x , y ) / y | ( x 1 , y 1 ) z 2 ( x , y ) / y | ( x 1 , y 1 ) z n ( x , y ) / y | ( x 1 , y 1 ) z 1 ( x , y ) / y | ( x m , y m ) z 2 ( x , y ) / y | ( x m , y m ) z n ( x , y ) / y | ( x m , y m ) ] ,
C = [ c 1 , c 2 , , c n ] T ,
C = D + g .
F V ¯ + C = 0 ,
G 0 ( s ) = H W F D ( s ) · H W F R ( s ) · H D A C ( s ) · H V M ( s ) · H M S ( s ) = ( 1 exp ( T s ) ) 2 T s 2 exp ( T s ) .
G 0 ( z ) = Z [ ( 1 exp ( T s ) ) 2 T s 2 exp ( T s ) ] = z 1 ( 1 z 1 ) 2 z ( z 1 ) 2 = z 2 .
S = F + C = V × Σ + × U T × C = i = 1 m ( u i T c ) ( v i / λ i ) ,
exp ( 2 T s ) + G τ ( s ) = 1 .
H Smith closed ( z ) = μ ( μ + 1 ) z 2 z .
H closed ( z ) = μ z 2 z + μ .
H smith = S ( z ) E ( z ) = μ z 2 ( 1 + μ ) z 2 z μ .
( 1 + μ ) S ( k + 2 ) S ( k + 1 ) μ S ( k ) = μ E ( k + 2 ) ,
S k + 2 = 1 1 + μ S k + 1 + μ 1 + μ S k μ 1 + μ i = 1 m ( u i T c k + 2 ) ( v i / λ i ) .

Metrics