Abstract

The development of truly scalable, multiplexed optical microarrays requires a detection platform capable of simultaneous detection of multiple signals in real-time. We present a technique we term dual-order snapshot spectroscopic imaging (DOSSI) and demonstrate that it can be effectively used to collect spectrally resolved images of a full field of view of sparsely located spots in real time. Resonant peaks of plasmonic gold nanoparticles were tracked as a function of their surrounding refractive index. Measurement uncertainty analysis indicated that the spectral resolution of DOSSI in the described configuration is approximately 0.95nm. Further, real-time measurements by DOSSI allowed discrimination between optically identical nanoparticles that were functionalized with two homologous small molecule ligands that bound to the same protein, albeit with different affinity, based purely on their different molecular interaction kinetics—a feat not possible with slower raster-type hyperspectral imaging systems, or other dark-field optical detection systems that solely rely on end point measurements. Kinetic measurements of plasmon bands by DOSSI can be performed with a relatively simple optical system, thereby opening up the possibility of developing low-cost detectors for arrayed plasmonic diagnostics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  2. T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).
  3. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
    [CrossRef] [PubMed]
  4. G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
    [CrossRef] [PubMed]
  5. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  6. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
    [CrossRef]
  7. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
    [CrossRef] [PubMed]
  8. C. X. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
    [CrossRef] [PubMed]
  9. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
    [CrossRef] [PubMed]
  10. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027(2007).
    [CrossRef] [PubMed]
  11. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49, B59–B70.
    [CrossRef] [PubMed]
  12. J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
    [CrossRef] [PubMed]
  13. Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
    [CrossRef] [PubMed]
  14. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors,” Appl. Opt. 46, 1931–1939(2007).
    [CrossRef] [PubMed]
  15. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [CrossRef]
  16. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
    [CrossRef]
  17. R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
    [CrossRef] [PubMed]
  18. N. M. Green, “Thermodynamics of binding of biotin and some analogues by avidin,” Biochem. J. 101, 774–780 (1966).
    [PubMed]
  19. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008).
    [CrossRef] [PubMed]
  20. T. O’Haver, “Peak finding and measurement,” http://www.mathworks.com/matlabcentral/fileexchange/11755 (2009).
  21. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
    [CrossRef]
  22. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
    [CrossRef]
  23. A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
    [CrossRef] [PubMed]
  24. M. Wilchek and E. A. Bayer, “The avidin biotin complex in bioanalytical applications,” Anal. Biochem. 171, 1–32 (1988).
    [CrossRef] [PubMed]
  25. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
    [CrossRef] [PubMed]

2010

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

2009

T. O’Haver, “Peak finding and measurement,” http://www.mathworks.com/matlabcentral/fileexchange/11755 (2009).

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

2008

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008).
[CrossRef] [PubMed]

2007

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors,” Appl. Opt. 46, 1931–1939(2007).
[CrossRef] [PubMed]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027(2007).
[CrossRef] [PubMed]

C. X. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef] [PubMed]

R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
[CrossRef] [PubMed]

2006

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

2005

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

2004

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

2003

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

2002

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

2001

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[CrossRef]

2000

Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
[CrossRef] [PubMed]

1995

A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
[CrossRef] [PubMed]

1988

M. Wilchek and E. A. Bayer, “The avidin biotin complex in bioanalytical applications,” Anal. Biochem. 171, 1–32 (1988).
[CrossRef] [PubMed]

1966

N. M. Green, “Thermodynamics of binding of biotin and some analogues by avidin,” Biochem. J. 101, 774–780 (1966).
[PubMed]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Bayer, E. A.

M. Wilchek and E. A. Bayer, “The avidin biotin complex in bioanalytical applications,” Anal. Biochem. 171, 1–32 (1988).
[CrossRef] [PubMed]

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Brady, D. J.

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Cheng, J.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Cheng, X. D.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Chilkoti, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors,” Appl. Opt. 46, 1931–1939(2007).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
[CrossRef] [PubMed]

Choi, K.

Cull, C. F.

Curry, A.

Curry, A. C.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

Dahlin, A.

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Endo, T.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Fienup, J. R.

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[CrossRef]

Gehm, M. E.

Green, N. M.

N. M. Green, “Thermodynamics of binding of biotin and some analogues by avidin,” Biochem. J. 101, 774–780 (1966).
[PubMed]

Guizar-Sicairos, M.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Hatsuzawa, T.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

He, Y.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Heap, T. B.

R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

Höök, F.

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Irudayaraj, J.

C. X. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[CrossRef]

John, R.

Käll, M.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Kurzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

Liu, Y.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Ma, Y. F.

Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
[CrossRef] [PubMed]

Marinakos, S. M.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[CrossRef]

Nath, N.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Nusz, G.

Nusz, G. J.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

O’Haver, T.

T. O’Haver, “Peak finding and measurement,” http://www.mathworks.com/matlabcentral/fileexchange/11755 (2009).

Oliver, T.

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Sardar, R.

R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
[CrossRef] [PubMed]

Schulz, T. J.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Shortreed, M. R.

Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
[CrossRef] [PubMed]

Shumaker-Parry, J. S.

R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
[CrossRef] [PubMed]

Stayton, P. S.

A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
[CrossRef] [PubMed]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Takizawa, H.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

Tamiya, E.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

Tan, P. H.

A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
[CrossRef] [PubMed]

Thurman, S. T.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Wax, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors,” Appl. Opt. 46, 1931–1939(2007).
[CrossRef] [PubMed]

Wilchek, M.

M. Wilchek and E. A. Bayer, “The avidin biotin complex in bioanalytical applications,” Anal. Biochem. 171, 1–32 (1988).
[CrossRef] [PubMed]

Willett, R. M.

Yanagida, Y.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

Yeung, E. S.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
[CrossRef] [PubMed]

Yu, C. X.

C. X. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

ACS Nano

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806(2009).
[CrossRef] [PubMed]

Adv. Mater.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. 13, 1389–1393 (2001).
[CrossRef]

Anal. Biochem.

M. Wilchek and E. A. Bayer, “The avidin biotin complex in bioanalytical applications,” Anal. Biochem. 171, 1–32 (1988).
[CrossRef] [PubMed]

Anal. Chem.

J. Cheng, Y. Liu, X. D. Cheng, Y. He, and E. S. Yeung, “Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy,” Anal. Chem. 82, 8744–8749 (2010).
[CrossRef] [PubMed]

Y. F. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72, 4640–4645 (2000).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74, 504–509 (2002).
[CrossRef] [PubMed]

G. J. Nusz, S. M. Marinakos, A. C. Curry, A. Dahlin, F. Höök, A. Wax, and A. Chilkoti, “Label-free plasmonic detection of biomolecular binding by a single gold nanorod,” Anal. Chem. 80, 984–989 (2008).
[CrossRef] [PubMed]

C. X. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Biochem. J.

N. M. Green, “Thermodynamics of binding of biotin and some analogues by avidin,” Biochem. J. 101, 774–780 (1966).
[PubMed]

Chem. Mater.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493(2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach,” J. Am. Chem. Soc. 129, 5356–5357 (2007).
[CrossRef] [PubMed]

J. Opt. A

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A 8, S239–S249 (2006).
[CrossRef]

J. Phys. Chem. B

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005).
[CrossRef]

Nano Lett.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5, 2335–2339 (2005).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl Acad. Sci USA

A. Chilkoti, P. H. Tan, and P. S. Stayton, “Site-directed mutagenesis studies of the high-affinity streptavidin–biotin complex—contributions of tryptophan residue-79, residue-108, and residue-120,” Proc. Natl Acad. Sci USA 92,1754–1758 (1995).
[CrossRef] [PubMed]

Sens. Mater.

T. Endo, H. Takizawa, Y. Yanagida, T. Hatsuzawa, and E. Tamiya, “Construction of a biosensor operating on the combined principles of electrochemical analysis and localized surface plasmon resonance for multiple detection of antigen–antibody and enzymatic reactions on the single biosensor,” Sens. Mater. 20, 255–265 (2008).

Other

T. O’Haver, “Peak finding and measurement,” http://www.mathworks.com/matlabcentral/fileexchange/11755 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic schematic of the DOSSI system and a representative image of gold nanorods as collected by the color CCD (inset). Scale bar indicates 5 μm .

Fig. 2
Fig. 2

Scattering spectrum of a single gold nanorod as measured by conventional microspectroscopy.

Fig. 3
Fig. 3

Schematic cartoon of sample substrate preparation. (1) COOH-terminated SAM applied to bNRs; (2) biotin conjugated to bNR; (3) bNRs sonicated into suspension; (4) amine-terminated SAM-applied ibNR; (5) iminobiotin conjugated to ibNRs; and (6) introduction of bNRs to ibNR sample.

Fig. 4
Fig. 4

Raw DOSSI micrograph of gold nanorods under dark-field illumination. Collected by a single CCD, the left-hand portion shows the zeroth-order mode of the nanorod field, and the right-hand portion shows the first-order diffraction mode of the same field of view. The vertical axis of the DOSSI image corresponds to the vertical axis of the sample, and the horizontal axis of the DOSSI image corresponds to the convoluted spatial/spectral axis of the sample. The intensity map is false colored for visual clarity.

Fig. 5
Fig. 5

Zeroth-order mode (left) and first-order diffracted mode (right) of a single-source-corrected DOSSI image.

Fig. 6
Fig. 6

(a) Line scan of a DOSSI image. The first 200 pixels are the zeroth-order mode and the remaining image is the source-corrected first-order mode. (b) DOSSI line scans of two nanorods on the same pixel row incubated in five glycerol/water mixtures with increasing RI.

Fig. 7
Fig. 7

Mean peak shift recorded for DOSSI imaging of gold nanorods as a function of RI. Error bars indicate standard deviations from eight images at each RI.

Fig. 8
Fig. 8

Data points (black dots) and fits to the binding (blue (left side) lines) and rinsing (red (right side) lines) of representative biotin-conjugated (top) and iminobiotin-conjugated (bottom) gold nanorods. The dotted line indicates the time point at which the rinse was initiated.

Tables (1)

Tables Icon

Table 1 Binding Constants and End Point LSPR Shifts a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

X = X 0 + X MAX e k d · t ,
X = X 0 + X MAX ( 1 e ( C k a + k d ) t ) ,

Metrics