Abstract

We demonstrate an ultra-high-speed phase-sensitive time-wavelength-domain optical coherence reflectometer with a stretched pulse supercontinuum source. A pulsed fiber laser operating at 10MHz repetition rate was used to generate a pulsed supercontinuum of 30ps pulse duration by using a nonlinear optical fiber. The supercontinuum pulses are stretched into 70ns pulses with a highly dispersive fiber. With this stretched pulse source, we have built a phase-sensitive optical coherence reflectometer that measures the spectral interferogram of reflected light. By using the linear relation between the wavelength and the temporal position in a linearly chirped pulse, ultra-high-speed spectrum measurement can be obtained with this method in the time domain. We have demonstrated ultra-high-speed two-dimensional surface profiling for a standard image target and high-speed single-point monitoring for a fixed point under vibrational motion. It is shown that the measurement speed for the position of a single point can be as fast as 2.5MHz, while the position accuracy can be better than 4.49nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  2. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structure and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
    [CrossRef] [PubMed]
  3. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [CrossRef] [PubMed]
  4. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26, 1271–1273 (2001).
    [CrossRef]
  5. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
    [CrossRef] [PubMed]
  6. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Bore, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–1233 (2005).
    [CrossRef] [PubMed]
  7. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464 (2006).
    [CrossRef] [PubMed]
  8. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32, 626–628 (2007).
    [CrossRef] [PubMed]
  9. T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
    [CrossRef]
  10. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  11. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef] [PubMed]
  12. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
    [CrossRef] [PubMed]

2009

T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
[CrossRef]

2007

2006

2005

2004

2001

1999

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Adler, D. C.

Akkin, T.

Anna, T.

T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
[CrossRef]

Badizadegan, K.

Bevilacqua, F.

Cense, B.

Choma, M. A.

Creazzo, T. L.

Cuche, E.

Dasari, R. R.

de Bore, J. F.

Deflores, L. P.

Depeursinge, C.

Ellerbee, A. K.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Feld, M. S.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fujimoto, J. G.

Hahn, M. S.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Huber, R.

Ikeda, T.

Iwai, H.

Izatt, J. A.

Joo, C.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kim, D. Y.

Mehta, D. S.

T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
[CrossRef]

Moon, S.

Park, B. H.

Popescu, G.

Sarunic, M. V.

Shakher, C.

T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
[CrossRef]

Vaughan, J. C.

Wax, A.

Weinberg, S.

Yang, C.

J. Opt. A

T. Anna, C. Shakher, and D. S. Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,” J. Opt. A 11, 045501 (2009).
[CrossRef]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32, 626–628 (2007).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
[CrossRef]

C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Opt. Lett. 26, 1271–1273 (2001).
[CrossRef]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structure and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Bore, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–1233 (2005).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31, 1462–1464 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for an all-fiber supercontinuum source generation. SMF, single-mode fiber; EDF, Er-doped fiber; WDM, wavelength division multiplexer; PC, polarization controller; LD, laser diode; HN-DSF, highly nonlinear dispersion-shifted fiber.

Fig. 2
Fig. 2

(a) Optical spectrum of a filtered supercontinuum source after propagating through the 3.42 km DCF. (b) Measured (squares) and six-order polynomial fitted (curve) time–wavelength relationship (group delay of a used DCF) of the SPSS. (c) Schematic diagram for the time–wavelength conversion principle of the SPSS. PD, photodiode.

Fig. 3
Fig. 3

(a) Schematic diagram of the phase-sensitive OCR using an SPSS used in our experiments. SPSS, stretched pulse supercontinuum source; Circ, optical fiber circulator; C, collimator; M1, x-scan mirror; M2, y-scan mirror; L1, scan lens; L2, tube lens; M3, mirror; L3, objective lens; S, sample; PD, photodiode. (b) Sample (USAF 1951) placed on a thin film and a cover glass. Bottom surface of cover glass plays a role as a reference plane.

Fig. 4
Fig. 4

(a) Measurement error in displacement ( 4.49 nm ) for a fixed point and (b) typical interferogram for a thin film sample.

Fig. 5
Fig. 5

(a) Surface profile of USAF 1951 resolution target (group 4/elements 4–6) obtained with phase-sensitive OCR. (b) Line profiles of a typical column and a row. (c) Measured dynamic motion of a PZT.

Metrics