G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).

[CrossRef]
[PubMed]

G. R. Myers, D. M. Paganin, T. E. Gureyev, and S. C. Mayo, “Phase-contrast tomography of single-material objects from few projections,” Opt. Express 16, 908–919 (2008).

[CrossRef]
[PubMed]

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. Lett. 35, 660–663 (2008).

[CrossRef]

K. J. Batenburg, “A network flow algorithm for binary image reconstruction from few projections,” Lect. Notes Comput. Sci. 4245, 86–97 (2006).

[CrossRef]

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457(2004).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

L. Hajdu and R. Tijdeman, “An algorithm for discrete tomography,” Linear Algebra Appl. 339, 147–169 (2001).

[CrossRef]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

F. Natterer, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

G.T.Herman and A.Kuba, eds., Discrete Tomography: Foundations, Algorithms and Applications (Birkhäuser, 1999).

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

K. J. Batenburg, “A network flow algorithm for binary image reconstruction from few projections,” Lect. Notes Comput. Sci. 4245, 86–97 (2006).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

C. Caubit, G. Hamon, A. P. Sheppard, and P. E. Øren, “Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling,” presented at the 22nd International Symposium of the Society of Core Analysts, Abu Dhabi, United Arab Emirates, 29 October–2 November 2008, paper SCA2008-33.

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. Lett. 35, 660–663 (2008).

[CrossRef]

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457(2004).

[CrossRef]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457(2004).

[CrossRef]

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457(2004).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

G. R. Myers, D. M. Paganin, T. E. Gureyev, and S. C. Mayo, “Phase-contrast tomography of single-material objects from few projections,” Opt. Express 16, 908–919 (2008).

[CrossRef]
[PubMed]

L. Hajdu and R. Tijdeman, “An algorithm for discrete tomography,” Linear Algebra Appl. 339, 147–169 (2001).

[CrossRef]

C. Caubit, G. Hamon, A. P. Sheppard, and P. E. Øren, “Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling,” presented at the 22nd International Symposium of the Society of Core Analysts, Abu Dhabi, United Arab Emirates, 29 October–2 November 2008, paper SCA2008-33.

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. Lett. 35, 660–663 (2008).

[CrossRef]

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

G. R. Myers, D. M. Paganin, T. E. Gureyev, and S. C. Mayo, “Phase-contrast tomography of single-material objects from few projections,” Opt. Express 16, 908–919 (2008).

[CrossRef]
[PubMed]

F. Natterer, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

C. Caubit, G. Hamon, A. P. Sheppard, and P. E. Øren, “Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling,” presented at the 22nd International Symposium of the Society of Core Analysts, Abu Dhabi, United Arab Emirates, 29 October–2 November 2008, paper SCA2008-33.

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

G. R. Myers, D. M. Paganin, T. E. Gureyev, and S. C. Mayo, “Phase-contrast tomography of single-material objects from few projections,” Opt. Express 16, 908–919 (2008).

[CrossRef]
[PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).

[CrossRef]
[PubMed]

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

C. Caubit, G. Hamon, A. P. Sheppard, and P. E. Øren, “Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling,” presented at the 22nd International Symposium of the Society of Core Analysts, Abu Dhabi, United Arab Emirates, 29 October–2 November 2008, paper SCA2008-33.

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).

[CrossRef]
[PubMed]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. Lett. 35, 660–663 (2008).

[CrossRef]

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

L. Hajdu and R. Tijdeman, “An algorithm for discrete tomography,” Linear Algebra Appl. 339, 147–169 (2001).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

G. R. Myers, C. D. L. Thomas, D. M. Paganin, T. E. Gureyev, and J. G. Clement, “A general few-projection method for tomographic reconstruction of samples consisting of several distinct materials,” Appl. Phys. Lett. 96, 021105 (2010).

[CrossRef]

I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413–1457(2004).

[CrossRef]

P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Int. J. Imag. Syst. Technol. 9, 101–109 (1998).

[CrossRef]

A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, “A discrete tomography algorithm for improving the quality of three-dimensional x-ray diffraction grain maps,” J. Appl. Cryst. 39, 582–588 (2006).

[CrossRef]

S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, “Binary tomography by iterating linear programs from noisy projections,” Lect. Notes Comput. Sci. 3322, 38–51 (2005).

[CrossRef]

K. J. Batenburg, “A network flow algorithm for binary image reconstruction from few projections,” Lect. Notes Comput. Sci. 4245, 86–97 (2006).

[CrossRef]

L. Hajdu and R. Tijdeman, “An algorithm for discrete tomography,” Linear Algebra Appl. 339, 147–169 (2001).

[CrossRef]

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. Lett. 35, 660–663 (2008).

[CrossRef]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008).

[CrossRef]
[PubMed]

S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemard, and P. Grangeat, “Dynamic x-ray computed tomography,” Proc. IEEE 91, 1574–1587 (2003).

[CrossRef]

C. Caubit, G. Hamon, A. P. Sheppard, and P. E. Øren, “Evaluation of the reliability of prediction of petrophysical data through imagery and pore network modelling,” presented at the 22nd International Symposium of the Society of Core Analysts, Abu Dhabi, United Arab Emirates, 29 October–2 November 2008, paper SCA2008-33.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 2001).

[CrossRef]

G.T.Herman and A.Kuba, eds., Discrete Tomography: Foundations, Algorithms and Applications (Birkhäuser, 1999).

F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]

F. Natterer, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, 2001).

[CrossRef]