Abstract

A chain of three silver nanorods with progressively decreasing sizes and separations is designed to focus the electric fields around the small nanorods. The optical properties of the chain of silver nanorods are investigated by the discrete dipole approximation method. The results show that, compared with the individual small nanorod and the chain of two nanorods, many enhanced electric fields are focused around the small nanorod of the chain of three nanorods due to the electric field couplings between adjacent nanorods. Therefore, the design of the chain of three nanorods provides a way to obtain stronger electric fields. In addition, how the structural parameters of the chain of three nanorods affect their optical properties is also studied.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404–137407(2004).
    [CrossRef] [PubMed]
  2. J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  4. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [CrossRef] [PubMed]
  5. P. E. Barclay, O. Painter, C. Santori, K. M. Fu, and R. G. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 17, 8081–8097(2009).
    [CrossRef] [PubMed]
  6. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
    [CrossRef]
  7. D. K. Gramotneva, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
    [CrossRef]
  8. Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
    [CrossRef]
  9. T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46, 3878–3890 (2007).
    [CrossRef] [PubMed]
  10. D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
    [CrossRef]
  11. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
    [CrossRef] [PubMed]
  12. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
    [CrossRef]
  13. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  14. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
    [CrossRef] [PubMed]
  15. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tip,” Opt. Express 18, 8722–8725 (2010).
    [CrossRef] [PubMed]
  16. S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
    [CrossRef]
  17. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
    [CrossRef] [PubMed]
  18. G. V. Pavan Kumar, “Near-field optical properties of silver nanocylinders arranged in a Pascal triangle,” Appl. Opt. 49, 6872–6877 (2010).
    [CrossRef] [PubMed]
  19. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
    [CrossRef]
  20. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499(1994).
    [CrossRef]
  21. Y. You, G. W. Kattawar, C. H. Li, and P. Yang, “Internal dipole radiation as a tool for particle identification,” Appl. Opt. 45, 9115–9124 (2006).
    [CrossRef] [PubMed]
  22. Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007).
    [CrossRef]
  23. Z. Laczik, “discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity,” Appl. Opt. 35, 3736–3745 (1996).
    [CrossRef] [PubMed]
  24. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
    [CrossRef]
  25. N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
    [CrossRef]
  26. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation,” Appl. Opt. 44, 5249–5256 (2005).
    [CrossRef] [PubMed]
  27. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009).
    [CrossRef] [PubMed]
  28. Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007).
    [CrossRef]
  29. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
    [CrossRef]
  30. A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L. A. Trachuk, A. G. M. Elnikov, and N. G. Khlebtsov, “Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay,” Appl. Opt. 44, 6285–6295 (2005).
    [CrossRef] [PubMed]

2010

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tip,” Opt. Express 18, 8722–8725 (2010).
[CrossRef] [PubMed]

G. V. Pavan Kumar, “Near-field optical properties of silver nanocylinders arranged in a Pascal triangle,” Appl. Opt. 49, 6872–6877 (2010).
[CrossRef] [PubMed]

2009

2008

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

2007

Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007).
[CrossRef]

T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46, 3878–3890 (2007).
[CrossRef] [PubMed]

2006

Y. You, G. W. Kattawar, C. H. Li, and P. Yang, “Internal dipole radiation as a tool for particle identification,” Appl. Opt. 45, 9115–9124 (2006).
[CrossRef] [PubMed]

D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

D. K. Gramotneva, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation,” Appl. Opt. 44, 5249–5256 (2005).
[CrossRef] [PubMed]

A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L. A. Trachuk, A. G. M. Elnikov, and N. G. Khlebtsov, “Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay,” Appl. Opt. 44, 6285–6295 (2005).
[CrossRef] [PubMed]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404–137407(2004).
[CrossRef] [PubMed]

2003

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

2000

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

1999

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
[CrossRef]

N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

1996

1994

Alekseeva, A. V.

Alexander, T. A.

Aubard, J.

N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Barclay, P. E.

Beausoleil, R. G.

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Berweger, S.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Bogatyrev, V. A.

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Chernyshev, A. V.

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Draine, T.

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Dykman, L. A.

Elnikov, A. G. M.

El-Sayed, M. A.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Fang, Z. Y.

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Flatau, P. J.

Fu, J. X.

Fu, K. M.

Gopinath, A.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Gramotneva, D. K.

D. K. Gramotneva, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Hafner, C.

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Ho, H. P.

Hoekstra, A. G.

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Kattawar, G. W.

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Khlebtsov, B. N.

Khlebtsov, N. G.

Kim, H.

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

Kim, S.

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Kong, S. K.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Laczik, Z.

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Le, D. M.

Lee, B.

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Lee, R. K. Y.

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Lévi, Georges

N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

Li, C. H.

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Lim, Y. J.

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
[CrossRef]

Lotito, V.

Maltsev, V. P.

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
[CrossRef]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Neacsu, C. C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Negro, L. D.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Nerkararyan, Kh. V.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Oh, S. H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Olmon, R. L.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Painter, O.

Park, B.

Park, J.

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

Pavan Kumar, G. V.

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Pilea, D. F. P.

D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Qi, H.

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

Raschke, M. B.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Ropers, C.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Santori, C.

Saraf, L. V.

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Schatz, G. C.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Semyanov, K. A.

Sennhauser, U.

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404–137407(2004).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Tarasov, P. A.

Trachuk, L. A.

Van Duyne, R. P.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Wang, C.

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Yang, P.

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

You, Y.

Yuan, W.

Yurkin, M. A.

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Z. Y.

Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007).
[CrossRef]

Zhao, Y. P.

J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007).
[CrossRef]

Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

Zhu, X.

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Z. Laczik, “discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity,” Appl. Opt. 35, 3736–3745 (1996).
[CrossRef] [PubMed]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and discrete dipole approximation,” Appl. Opt. 44, 5249–5256 (2005).
[CrossRef] [PubMed]

A. V. Alekseeva, V. A. Bogatyrev, L. A. Dykman, B. N. Khlebtsov, L. A. Trachuk, A. G. M. Elnikov, and N. G. Khlebtsov, “Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay,” Appl. Opt. 44, 6285–6295 (2005).
[CrossRef] [PubMed]

Y. You, G. W. Kattawar, C. H. Li, and P. Yang, “Internal dipole radiation as a tool for particle identification,” Appl. Opt. 45, 9115–9124 (2006).
[CrossRef] [PubMed]

T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores,” Appl. Opt. 46, 3878–3890 (2007).
[CrossRef] [PubMed]

W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009).
[CrossRef] [PubMed]

J. X. Fu, B. Park, and Y. P. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009).
[CrossRef] [PubMed]

G. V. Pavan Kumar, “Near-field optical properties of silver nanocylinders arranged in a Pascal triangle,” Appl. Opt. 49, 6872–6877 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Z. Y. Zhang and Y. P. Zhao, “The optical properties of helical Ag nanostructure calculated by discrete dipole approximation method,” Appl. Phys. Lett. 90, 221501 (2007).
[CrossRef]

D. F. P. Pilea and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

S. Kim, Y. J. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008).
[CrossRef]

J. Appl. Phys.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polariton in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000).
[CrossRef]

D. K. Gramotneva, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Z. Y. Zhang and Y. P. Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, 113308 (2007).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, and O. J. F. Martin, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112, 7761–7774 (2000).
[CrossRef]

N. Félidj, J. Aubard, and Georges Lévi, “Discrete dipole approximation for ultraviolet visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys. 111, 1195–1208 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3078 (1999).
[CrossRef]

Nano Lett.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009).
[CrossRef] [PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[CrossRef] [PubMed]

C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanomitter on tip,” Nano Lett. 10, 592–596(2010).
[CrossRef] [PubMed]

Nat. Photon.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404–137407(2004).
[CrossRef] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanosphere as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Plasmonics

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5, 207–212 (2010).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics for the incident polarization and the chain of silver nanorods structure.

Fig. 2
Fig. 2

Extinction spectrum of the chain of three and two silver nanorods structure and three individual nanorods at longitudinal mode excitation.

Fig. 3
Fig. 3

Electric field enhancement contours ( log 10 γ ) of the chain of three silver nanorods at different incident wavelengths: (a)  λ 1 = 0.415 μm , (b)  λ 2 = 0.483 μm , and (c)  λ 3 = 0.536 μm , small nanorod (d)  λ S = 0.497 nm , and chain of two silver nanorods at different wavelength (e)  λ 2 = 0.479 μm , and (f)  λ 3 = 0.529 μm .

Fig. 4
Fig. 4

Extinction spectrum of the chain of three nanorods structure and three individual nanorods at transverse mode excitation.

Fig. 5
Fig. 5

(a) Extinction spectra of the chain of silver nanorods with different lengths of large nanorods L 1 = 0 , 12, 28, 44, 52, and 60 nm ; (b) plasmon peaks as a function of L 1 .

Fig. 6
Fig. 6

(a) Extinction spectra of the chain of silver nanorods with different lengths of medium nanorods L 2 = 36 , 44, 52, and 60 nm ; (b) plasmon peaks as a function of L 2 .

Fig. 7
Fig. 7

(a) Extinction spectra of the chain of silver nanorods with different length of medium nanorods L 3 = 12 , 20, 28, and 36; (b) plasmon peaks as a function of L 3 .

Metrics