Abstract

We describe what we believe to be a new digital holographic configuration that can be utilized for both single-shot, dual-wavelength, off-axis geometry and imaging polarimetry. To get the feasibility of the single-shot, dual-wavelength, off-axis geometry, a sample with a nominal step height of 1.34μm is used. Undesirable noises that strongly affect the measurement have been suppressed successfully by using a modified flat fielding method for the dual-wavelength scheme. And also, the experiment is conducted on a nanopattern sample on the basis of a single image acquisition to show the imaging polarimetry capability. The proposed scheme can provide a real-time solution for measuring three-dimensional objects having a high abrupt height difference with moderate accuracy. Furthermore, it can be used as a fast polarization imaging measurement tool.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), pp. 459–490.
  2. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy witha single hologram acquisition,” Opt. Express 15, 7231–42 (2007).
    [CrossRef] [PubMed]
  3. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol. XXVI, pp. 349–393.
    [CrossRef]
  4. U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
    [CrossRef]
  5. K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985).
    [CrossRef]
  6. Y. Y. Cheng and J. C. Wyant, “Two wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
    [CrossRef] [PubMed]
  7. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816(1987).
    [CrossRef] [PubMed]
  8. J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006).
    [CrossRef]
  9. M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
    [CrossRef]
  10. S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002).
    [CrossRef]
  11. Y. Y. Cheng and J. C. Wyant, “Multiple-wave length phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
    [CrossRef] [PubMed]
  12. D. Kim, J. W. You, and S. Kim, “White light on-axis digitalholographic microscopy based on spectral phase shifting,” Opt. Express 14, 229–234 (2006).
    [CrossRef] [PubMed]
  13. J.-W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Express 16, 21022–21031 (2008).
    [CrossRef] [PubMed]
  14. P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  15. H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.
  16. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464(1993).
    [CrossRef] [PubMed]
  17. P. de Groot, “Surface profiling by frequency-domain analysis of white light interferograms,” Proc. SPIE 2248, 101–104(1994).
    [CrossRef]
  18. J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  19. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef] [PubMed]
  20. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  21. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [CrossRef]
  22. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phasecontrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  23. D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14, 409–414 (2010).
    [CrossRef]
  24. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
    [CrossRef]
  25. T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
    [CrossRef]
  26. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
    [CrossRef] [PubMed]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twinimage elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  28. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.
  29. S. B. Howell, Handbook of CCD Astronomy (Cambridge University, 2006).
  30. D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
    [CrossRef]
  31. D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
    [CrossRef]
  32. V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
    [CrossRef]
  33. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
    [CrossRef]
  34. M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  35. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
    [CrossRef]
  36. Guide to the Expression of Uncertainty in Measurement, (International Organization for Standardization, 1995).
  37. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodizationusing cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69(2000).
    [CrossRef]

2010

D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14, 409–414 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
[CrossRef]

2009

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

2008

J.-W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Express 16, 21022–21031 (2008).
[CrossRef] [PubMed]

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

2007

2006

J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006).
[CrossRef]

D. Kim, J. W. You, and S. Kim, “White light on-axis digitalholographic microscopy based on spectral phase shifting,” Opt. Express 14, 229–234 (2006).
[CrossRef] [PubMed]

2004

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

2002

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002).
[CrossRef]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[CrossRef] [PubMed]

2001

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

2000

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twinimage elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodizationusing cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69(2000).
[CrossRef]

1999

1997

1995

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

1994

P. de Groot, “Surface profiling by frequency-domain analysis of white light interferograms,” Proc. SPIE 2248, 101–104(1994).
[CrossRef]

1993

1987

1985

K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985).
[CrossRef]

Y. Y. Cheng and J. C. Wyant, “Multiple-wave length phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
[CrossRef] [PubMed]

1984

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

1965

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Abdelsalam, D. G.

D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14, 409–414 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
[CrossRef]

Baek, B. J.

Bang, K.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Bao, J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

Beghuin, D.

Bevilacqua, F.

Bhaduri, B.

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

Bonitz, J.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), pp. 459–490.

Brock, N. J.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

Charrière, F.

Cheng, Y. Y.

Cheng, Y.-Y.

K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985).
[CrossRef]

Cho, Y. J.

Choi, C.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Colomb, T.

Creath, K.

K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816(1987).
[CrossRef] [PubMed]

K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985).
[CrossRef]

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol. XXVI, pp. 349–393.
[CrossRef]

Cuche, E.

Dahlgren, P.

de Groot, P.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

P. de Groot, “Surface profiling by frequency-domain analysis of white light interferograms,” Proc. SPIE 2248, 101–104(1994).
[CrossRef]

P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464(1993).
[CrossRef] [PubMed]

Deck, L.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464(1993).
[CrossRef] [PubMed]

Depeursinge, C.

Eloker, M. M.

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
[CrossRef]

Emery, Y.

Fan, H.

H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.

Fang, Z. P.

H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Gaylord, T. K.

M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Grann, E.

Grann, E. B.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

Griebner, U.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Grunwald, R.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Hansel, T.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Hariharan, P.

J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006).
[CrossRef]

Hayes, J. B.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

Howell, S. B.

S. B. Howell, Handbook of CCD Astronomy (Cambridge University, 2006).

Jakatdar, N.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

Kaufmann, C.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Kawai, H.

Kim, C.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Kim, D.

Kim, K.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Kim, S.

Kothiyal, M. P.

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

Kühn, J.

Kumar, U. Paul

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Lee, C. C.

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002).
[CrossRef]

Lee, W.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Leith, E.

Lu, S. H.

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002).
[CrossRef]

Malacara, D.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.

Malacara, Z.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.

Marquet, P.

Millerd, J. E.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

Mohan, N. K.

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

Moharam, M. G.

M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

Montfort, F.

Niu, X.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

North-Morris, M. B.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

Ohzu, H.

Pommet, D.

Pommet, D. A.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

Protopopov, V. V.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

Reading, I.

H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.

Reimann, K.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

Schmit, J.

J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006).
[CrossRef]

Servin, M.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.

Shaalan, M. S.

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
[CrossRef]

Spanos, C. J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

Takaki, Y.

Upatnieks, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), pp. 459–490.

Wyant, J. C.

Yamaguchi, I.

You, J. W.

You, J.-W.

Zhang, T.

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electrically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

IEEE J. Quantum Electron.

T. Hansel, R. Grunwald, K. Reimann, J. Bonitz, C. Kaufmann, and U. Griebner, “Deformation measurements of high-speed MEMS with combined two-wavelength single-pulse digital holography and single phase reconstruction using subpicosecond pulses,” IEEE J. Quantum Electron. 15, 1351–1358 (2009).
[CrossRef]

IEEE Trans. Semicond. Manuf.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[CrossRef]

J. Mod. Opt.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferogramsin the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

J. Opt. Soc. Am.

E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12, 1077–1086 (1995).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Korea

Meas. Sci. Technol.

S. H. Lu and C. C. Lee, “Measuring large step heights by variable synthetic wavelength interferometry,” Meas. Sci. Technol. 13, 1382–1387(2002).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Opt. Acta

K. Creath, Y.-Y. Cheng, and J. C. Wyant, “Contouring aspheric surfaces using two-wavelength phase-shifting interferometry,” Opt. Acta 32, 1455–1464 (1985).
[CrossRef]

Opt. Commun.

V. V. Protopopov, K. Kim, C. Choi, K. Bang, W. Lee, and C. Kim, “Hetrodyne polarimetry for mapping defects inlithography masks,” Opt. Commun. 281, 2355–2366 (2008).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodizationusing cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69(2000).
[CrossRef]

Opt. Eng.

J. Schmit and P. Hariharan, “Two-wavelength interferometry profilometry with a phase- step error-compensating algorithm,” Opt. Eng. 45, 115602 (2006).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

U. Paul Kumar, B. Bhaduri, M. P. Kothiyal, and N. K. Mohan, “Two wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes atreflection,” Opt. Lasers Eng. 48, 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvaturemeasurement of spherical smooth surfaces by multiple-beam interferometry inreflection,” Opt. Lasers Eng. 48, 643–649 (2010).
[CrossRef]

Opt. Lett.

Proc. SPIE

P. de Groot, “Surface profiling by frequency-domain analysis of white light interferograms,” Proc. SPIE 2248, 101–104(1994).
[CrossRef]

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980), pp. 459–490.

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol. XXVI, pp. 349–393.
[CrossRef]

H. Fan, I. Reading, and Z. P. Fang, “Research on tilted coherent plane white-light interferometry for wafer bump 3D inspection,” SIMTech. Rep. 7 (SIMTech, 2006), pp.59–63.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis Foroptical Testing (Taylor and Francis, 2005), pp. 384–385.

S. B. Howell, Handbook of CCD Astronomy (Cambridge University, 2006).

Guide to the Expression of Uncertainty in Measurement, (International Organization for Standardization, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the proposed single-shot, dual-wavelength interferometric system.

Fig. 2
Fig. 2

Sequential reconstruction steps of the spatial filtering based phase-contrast, dual-wavelength off-axis interferometry. (a) Original phase object, (b) off-axis interferogram, (c) Fourier transformed spatial frequency domain data, (d)–(e) reconstructed amplitude and phase map for λ 1 = 635 nm , (f)–(g) amplitude and phase map for λ 2 = 675 nm , (h) object phase map on the synthethic beat-wavelength, and (i) 2D surface profile along the selected line of (h).

Fig. 3
Fig. 3

2D surface profile of Fig. 2i after applying the rms method for the distributed height.

Fig. 4
Fig. 4

Uneven illumination which produces darkness at the edges of the image. (a) Inhomogenity of the laser beam and (b) shadow detection of the dust particles hanging at the CCD camera aperture.

Fig. 5
Fig. 5

Experimental results before and after calibration with the flat fielding method. (a) Off-axis interferogram before calibration with the flat fielding method, (b) reconstructed phase at λ 1 = 635 nm , (c) reconstructed phase at λ 2 = 675 nm , (d) object phase map on the synthetic beat wavelength, and (e)–(h) the counterpart data of (a)–(d) after calibration with the flat fielding method.

Fig. 6
Fig. 6

2D surface profile (a) along the selected line of Fig. 5d, (b) along the selected line of Fig. 5h, (c) after applying the rms method for the distributed height of (a), and (d) after applying the rms method for the distributed height of (b).

Fig. 7
Fig. 7

3D geometry of the nano patterns used for the RCWA based scatterometry theory.

Fig. 8
Fig. 8

Sequential reconstruction steps of the spatial filtering based polarimetry. (a) Original phase object, (b) off-axis interferogram, (c) Fourier transformed spatial frequency domain data, (d)–(e) reconstructed amplitude and phase map for λ 1 = 635 nm , (f)–(g) amplitude and phase map for λ 1 = 635 nm , (h) phase difference map Δ ( x , y ) , and (i) phase difference line profile along the selected line of (h).

Fig. 9
Fig. 9

2D phase profile of Fig. 8i after applying the rms method.

Fig. 10
Fig. 10

Reconstruction steps of the spatial filtering based dual-wavelength, off-axis holography at d = 440 mm . (a) Off-axis hologram, (b) Fourier transformed spatial frequency domain data, (c) object phase map on the synthetic beat wavelength, and (d) 2D surface profile along the selected line of (c) after applying the rms for the distributed height.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( k , l ) = | O 1 | 2 + | R 1 | 2 + | O 2 | 2 + | R 2 | 2 + R 1 * O 1 + R 1 O 1 * + R 2 * O 2 + R 2 O 2 * .
Ψ i = R i * O i ,
R D i ( m , n ) = A R i exp [ i ( 2 π / λ i ) ( k x i m Δ x + k y i n Δ y ) ] ,
Φ = arg ( O 1 O 2 * ) = ϕ 1 ϕ 2 = 2 π x ( λ 2 λ 1 λ 1 λ 2 ) = 2 π x Λ ,
Λ = λ 1 λ 2 λ 2 λ 1 .
h = Φ 4 π Λ .
I C = [ M ( I R I B ) ] / ( I F I B ) ,
ρ = R p R s = R TM R TE = | R TM R TE | e i ( δ TM δ TE ) = tan Ψ e i Δ ,

Metrics