Abstract

Light absorbing objects embedded in silicone have been imaged using photoacoustic digital holography. The photoacoustic waves were generated using a pulsed Nd:YAG laser, λ=1064nm, and pulse length=12ns. When the waves reached the silicone surface, they were measured optically along a line using a scanning laser vibrometer. The acoustic waves were then digitally reconstructed using a holographic algorithm. The laser vibrometer is proven to be sensitive enough to measure the surface velocity due to photoacoustic waves generated from laser pulses with a fluence allowed for human tissue. It is also shown that combining digital holographic reconstructions for different acoustic wavelengths provides images with suppressed noise and improved depth resolution. The objects are imaged at a depth of 16.5mm with a depth resolution of 0.5mm.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Photoacoustic waves generated in blood studied using pulsed digital holography

Erik Olsson, Per Gren, and Mikael Sjödahl
Appl. Opt. 49(16) 3053-3058 (2010)

Non-contact photoacoustic tomography and ultrasonography for tissue imaging

Guy Rousseau, Alain Blouin, and Jean-Pierre Monchalin
Biomed. Opt. Express 3(1) 16-25 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription