Abstract

Light absorbing objects embedded in silicone have been imaged using photoacoustic digital holography. The photoacoustic waves were generated using a pulsed Nd:YAG laser, λ=1064nm, and pulse length=12ns. When the waves reached the silicone surface, they were measured optically along a line using a scanning laser vibrometer. The acoustic waves were then digitally reconstructed using a holographic algorithm. The laser vibrometer is proven to be sensitive enough to measure the surface velocity due to photoacoustic waves generated from laser pulses with a fluence allowed for human tissue. It is also shown that combining digital holographic reconstructions for different acoustic wavelengths provides images with suppressed noise and improved depth resolution. The objects are imaged at a depth of 16.5mm with a depth resolution of 0.5mm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [CrossRef] [PubMed]
  2. A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).
  3. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
    [CrossRef]
  4. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).
  5. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef] [PubMed]
  6. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
    [CrossRef]
  7. A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
    [CrossRef]
  8. V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
    [CrossRef]
  9. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
    [CrossRef]
  10. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503–509 (2009).
    [CrossRef]
  11. J. Yao, K. I. Maslov, and L. V. Wang, “Simultaneously imaging oxygen saturation and blood flow using optical-resolution photoacoustic microscopy,” in Biomedical Optics and 3D Imaging OSA Optics and Photonics Congress (OSA, 2010), pp. 9–11.
  12. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17, 7688–7693 (2009).
    [CrossRef] [PubMed]
  13. S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
    [CrossRef] [PubMed]
  14. S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
    [CrossRef] [PubMed]
  15. L. V. Wang, “Photoacoustic tomography and microscopy,” Opt. Photonics News 19(7), 36–41 (2008).
    [CrossRef]
  16. E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt. 49, 3053–3058 (2010).
    [CrossRef] [PubMed]
  17. E. Olsson, “Selective imaging of sound sources in air using phase-calibrated multiwavelength digital holographic reconstructions,” Opt. Eng. 46, 075801 (2007).
    [CrossRef]
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

2010

2009

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503–509 (2009).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17, 7688–7693 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

2008

L. V. Wang, “Photoacoustic tomography and microscopy,” Opt. Photonics News 19(7), 36–41 (2008).
[CrossRef]

2007

E. Olsson, “Selective imaging of sound sources in air using phase-calibrated multiwavelength digital holographic reconstructions,” Opt. Eng. 46, 075801 (2007).
[CrossRef]

2005

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

2002

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

2001

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

2000

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

1999

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

1997

1996

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[CrossRef]

1880

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Aleinikov, V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Andreev, V. A.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

Fleming, R. D.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Gren, P.

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Henrichs, P. M.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

Hu, S.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17, 7688–7693 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
[CrossRef] [PubMed]

Jacques, S. L.

Karabutov, A.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[CrossRef]

Karabutov, A. A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

Khamapirad, T.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

Letokhov, V. S.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Maslov, K.

S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17, 7688–7693 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

Maslov, K. I.

J. Yao, K. I. Maslov, and L. V. Wang, “Simultaneously imaging oxygen saturation and blood flow using optical-resolution photoacoustic microscopy,” in Biomedical Optics and 3D Imaging OSA Optics and Photonics Congress (OSA, 2010), pp. 9–11.

Olsson, E.

E. Olsson, P. Gren, and M. Sjödahl, “Photoacoustic waves generated in blood studied using pulsed digital holography,” Appl. Opt. 49, 3053–3058 (2010).
[CrossRef] [PubMed]

E. Olsson, “Selective imaging of sound sources in air using phase-calibrated multiwavelength digital holographic reconstructions,” Opt. Eng. 46, 075801 (2007).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36, 402–415 (1997).
[CrossRef] [PubMed]

Podymova, N. B.

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[CrossRef]

Savateeva, E. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Singh, H.

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Sjödahl, M.

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Tittel, F. K.

Tsytsarev, V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

Wang, L. V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17, 7688–7693 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503–509 (2009).
[CrossRef]

L. V. Wang, “Photoacoustic tomography and microscopy,” Opt. Photonics News 19(7), 36–41 (2008).
[CrossRef]

J. Yao, K. I. Maslov, and L. V. Wang, “Simultaneously imaging oxygen saturation and blood flow using optical-resolution photoacoustic microscopy,” in Biomedical Optics and 3D Imaging OSA Optics and Photonics Congress (OSA, 2010), pp. 9–11.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Yao, J.

J. Yao, K. I. Maslov, and L. V. Wang, “Simultaneously imaging oxygen saturation and blood flow using optical-resolution photoacoustic microscopy,” in Biomedical Optics and 3D Imaging OSA Optics and Photonics Congress (OSA, 2010), pp. 9–11.

Zhulina, Y. V.

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Am. J. Sci.

A. G. Bell, “On the production and reproduction of sound by light,” Am. J. Sci. 20, 305–324 (1880).

Appl. Opt.

Appl. Phys. B

A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B 63, 545–563 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

J. Biomed. Opt.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14, 040503 (2009).
[CrossRef] [PubMed]

Med. Phys.

S. Hu, K. Maslov, and L. V. Wang, “In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy,” Med. Phys. 36, 2320–2323 (2009).
[CrossRef] [PubMed]

Nat. Photon.

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photon. 3, 503–509 (2009).
[CrossRef]

Opt. Eng.

E. Olsson, “Selective imaging of sound sources in air using phase-calibrated multiwavelength digital holographic reconstructions,” Opt. Eng. 46, 075801 (2007).
[CrossRef]

Opt. Express

Opt. Photonics News

L. V. Wang, “Photoacoustic tomography and microscopy,” Opt. Photonics News 19(7), 36–41 (2008).
[CrossRef]

Phys. Med. Biol.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

A. A. Oraevsky, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. A. Andreev,, Z. Gatalica, H. Singh, and R. D. Fleming, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, V. Aleinikov, Y. V. Zhulina, R. D. Fleming, and A. A. Oraevsky, “Optoacoustic tomography of breast cancer with arc-array transducer,” Proc. SPIE 3916, 36–47(2000).
[CrossRef]

Other

J. Yao, K. I. Maslov, and L. V. Wang, “Simultaneously imaging oxygen saturation and blood flow using optical-resolution photoacoustic microscopy,” in Biomedical Optics and 3D Imaging OSA Optics and Photonics Congress (OSA, 2010), pp. 9–11.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

This is an illustration of the phantom containing the two absorbers. To the left is a view from the bottom, and to the right, a 3D view that shows the white surface and the scanning line where the measurements took place. The scanning line is straight above the absorbents (at the same x coordinate).

Fig. 2
Fig. 2

Experimental setup. The PA waves were generated using a pulsed Nd:Yag laser. The purpose of the λ / 2 plate and the thin film polarizer was to control the amount of energy reaching the absorbents. The energy was measured using a pulse energy meter that was calibrated against another at the same position as the phantom before the actual experiments. A motorized x y z translation system made it possible to scan the laser spot through the whole target volume. The surface velocity was measured along a line using a scanning LDV.

Fig. 3
Fig. 3

Principle of the reconstruction technique. The phase changes due to physical and numerical propagation cancel out at the position of the image. The phase of the reconstructed wave at the image position is the conjugated phase of the emitted wave at the position of the source.

Fig. 4
Fig. 4

Surface velocity measured at the surface point closest to the excited absorbent A. The data are averaged from 50 measurements. The multiple peaks in the signal are due to reflections between the surface and the bottom. Pf1 is the acoustic pulse traveling directly from the absorbent to the surface. Pb1 is the acoustic pulse traveling backward to the bottom and then reflecting to the surface. Those two pulses then bounce back and forth between the surface and the bottom. Pf2 is thus the second time Pf1 arrives at the surface. The first peak is plotted in a shorter time interval at the top in the figure. It displays the N shape of the pulse, and from it the maximum surface displacement can be estimated to be 6 nm .

Fig. 5
Fig. 5

Normalized frequency spectra of the first pulses Pf1 from absorbents A and B.

Fig. 6
Fig. 6

Resulting surface velocity along the entire scanning line for the first 100 μs when both measurements are added together. Besides the direct wave at the top, two more waves due to reflections can be seen (compare to Pb1 and Pf2 in Fig. 4). The data in Fig. 4 were acquired at y = 8 mm in this figure from a single measurement when only absorbent A was excited.

Fig. 7
Fig. 7

The real part of the complex amplitude for all frequencies from absorbents (a) A and (b) B. The narrower shape of the high amplitude data in (a) is due to the larger size of the absorbing area of A compared to B.

Fig. 8
Fig. 8

The measured phase of the waves from both absorbents is plotted (a) for 100 kHz and (b) for 250 kHz . The corresponding reconstructions are plotted in (c) and (d). When phase data are available for a limited region only, as with the data at 250 kHz for absorbent A, depth information is lost in the reconstruction.

Fig. 9
Fig. 9

The images in (a), (b), and (c) are the resulting intensity from adding all 500 reconstructed complex amplitudes. In (a) both absorbers are clearly imaged at the correct positions. Magnified images of absorbents A and B are displayed in (b) and (c), respectively. The corresponding results after applying the filter are displayed in (d), (e), and (f). The resolution is now increased even further.

Fig. 10
Fig. 10

Plots of the normalized theoretical fluence striking the absorbents and the normalized reconstructed intensity. The ratio between the fluence peaks is preserved in the reconstructed intensity.

Tables (1)

Tables Icon

Table 1 Photoacoustic Generation Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U λ ( y , z ) = I { U λ ( y , 0 ) } exp [ i k m z ] exp [ i k p y ] d p .
F ( y , z ) = exp [ σ s ( y , z ) ] ,
σ s = C σ min ( σ ) max ( σ ) min ( σ )
I ( y , z ) = F ( y , z ) | λ U λ ( y , z ) | 2 .

Metrics