Abstract

The resolving power of an imaging system in digital lensless Fourier holographic configuration is mainly limited by the numerical aperture of the experimental setup that is defined by both the restricted CCD size and the presence of a beam splitter cube in front of the CCD. We present a method capable of improving the resolution in such a system configuration based on synthetic aperture (SA) generation by using time-multiplexing tilted illumination onto the input object. Moreover, a priori knowledge about the imaged object allows customized SA shaping by the addition of elementary apertures only in the directions of interest. Experimental results are provided, showing agreement with theoretical predictions and demonstrating a resolution limit corresponding with a synthetic numerical aperture value of 0.45.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat. 9, 413-468 (1873).
    [CrossRef]
  2. M. Françon, “Amélioration de resolution d'optique,” Nuovo Cimento Suppl. 9, 283-290 (1952).
    [CrossRef]
  3. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497-501 (1955).
    [CrossRef]
  4. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152-1158 (1986).
    [CrossRef]
  5. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463-1472 (1966).
    [CrossRef]
  6. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit II,” J. Opt. Soc. Am. 57, 932-941 (1967).
    [CrossRef]
  7. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  8. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124-126 (1999).
    [CrossRef]
  9. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426(2003).
    [CrossRef] [PubMed]
  10. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
    [CrossRef] [PubMed]
  11. M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418-419 (1971).
    [CrossRef]
  12. M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403-410 (1973).
    [CrossRef]
  13. T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406-408 (1974).
    [CrossRef] [PubMed]
  14. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  15. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356-2358 (2008).
    [CrossRef] [PubMed]
  16. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873-7892 (2009).
    [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828(2006).
    [CrossRef] [PubMed]
  18. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
    [CrossRef] [PubMed]
  19. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007).
    [CrossRef] [PubMed]
  20. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy--approaching the linear system limits of optical resolution,” Opt. Express 15, 6651-6663(2007).
    [CrossRef] [PubMed]
  21. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
    [CrossRef]
  22. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
    [CrossRef]
  23. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260-19270 (2008).
    [CrossRef]
  24. F. Le Clerc, M. Gross, and L. Collot, “Synthetic aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550-1552 (2001).
    [CrossRef]
  25. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  26. R. Binet, J. Colineau, and J-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41, 4775-4782 (2002).
    [CrossRef] [PubMed]
  27. Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
    [CrossRef]
  28. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
    [CrossRef] [PubMed]
  29. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009).
    [CrossRef] [PubMed]
  30. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009).
    [CrossRef]
  31. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  32. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef] [PubMed]
  33. L. Repetto, E. Piano, and C. Pontiggia C, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132-1134 (2004).
    [CrossRef] [PubMed]
  34. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  35. V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492-1494 (2009).
    [CrossRef] [PubMed]
  36. U. Schnars and W. P. Jueptner, Digital Holography (Springer, 2005).
  37. H. Jiang, J. Zhao, J. Di, and Ch. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836-18842 (2009).
    [CrossRef]
  38. G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
    [CrossRef]
  39. S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
    [CrossRef]
  40. http://www.schott.com/advanced_optics/english/download/datasheet_all_english.pdf.
  41. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1761 (2008).
    [CrossRef]
  42. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
    [CrossRef]

2009 (6)

2008 (5)

2007 (3)

2006 (4)

2004 (2)

2003 (2)

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426(2003).
[CrossRef] [PubMed]

2002 (4)

2001 (2)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

F. Le Clerc, M. Gross, and L. Collot, “Synthetic aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550-1552 (2001).
[CrossRef]

1999 (2)

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124-126 (1999).
[CrossRef]

1986 (1)

1974 (1)

1973 (1)

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403-410 (1973).
[CrossRef]

1971 (1)

1967 (1)

1966 (1)

1955 (1)

1952 (1)

M. Françon, “Amélioration de resolution d'optique,” Nuovo Cimento Suppl. 9, 283-290 (1952).
[CrossRef]

1873 (1)

E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat. 9, 413-468 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat. 9, 413-468 (1873).
[CrossRef]

Alexandrov, S. A.

Binet, R.

Bo, F.

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Brooker, G.

Brueck, S. R. J.

Chen, X.

Colineau, J.

Collot, L.

Cox, I. J.

De Nicola, S.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
[CrossRef] [PubMed]

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

Di, J.

Ferraro, P.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
[CrossRef] [PubMed]

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

Ferreira, C.

Finizio, A.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
[CrossRef] [PubMed]

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

Françon, M.

M. Françon, “Amélioration de resolution d'optique,” Nuovo Cimento Suppl. 9, 283-290 (1952).
[CrossRef]

Fröning, P.

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

García, J.

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009).
[CrossRef] [PubMed]

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009).
[CrossRef]

V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492-1494 (2009).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260-19270 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828(2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
[CrossRef] [PubMed]

García-Martínez, P.

Garcia-Sucerquia, J.

Granero, L.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009).
[CrossRef]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009).
[CrossRef] [PubMed]

Grilli, S.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
[CrossRef] [PubMed]

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

Gross, M.

Gutzler, T.

Hennelly, B. M.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Hillman, T. R.

Indebetouw, G.

Javidi, B.

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Jericho, S. K.

Jiang, H.

Jueptner, W. P.

U. Schnars and W. P. Jueptner, Digital Holography (Springer, 2005).

Kelly, D. P.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Klages, P.

Kondo, M.

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403-410 (1973).
[CrossRef]

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Kuznetsova, Y.

Le Clerc, F.

Lehureau, J-C.

Leval, J.

Liu, Ch.

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Liu, H.

Liu, Z.

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Lukosz, W.

Massig, J. H.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Mendlovic, D.

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

Merola, F.

Mico, V.

Micó, V.

Naughton, T. J.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Neumann, A.

Pandey, N.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Paturzo, M.

Pedrini, G.

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
[CrossRef] [PubMed]

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Piano, E.

Picart, P.

Pierattini, G.

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

Pontiggia, C.

Qin, Ch.

Repetto, L.

Rhodes, W. T.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Rosen, J.

Sampson, D. D.

Santoyo, F. M.

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Sato, T.

Schnars, U.

U. Schnars and W. P. Jueptner, Digital Holography (Springer, 2005).

Schwarz, C. J.

Sheppard, C. J. R.

Tada, Y.

Tiziani, H. J.

Tiziani, J. H.

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Toraldo di Francia, G.

Ueda, M.

Wang, Y.

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Yamagishi, G.

Yuan, C.

Zalevsky, Z.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009).
[CrossRef]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009).
[CrossRef] [PubMed]

V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492-1494 (2009).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260-19270 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828(2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
[CrossRef] [PubMed]

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

Zhai, H.

Zhao, J.

Zhu, J.

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Archiv. Microskopische Anat. (1)

E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat. 9, 413-468 (1873).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (2)

Nuovo Cimento Suppl. (1)

M. Françon, “Amélioration de resolution d'optique,” Nuovo Cimento Suppl. 9, 283-290 (1952).
[CrossRef]

Opt. Acta (1)

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403-410 (1973).
[CrossRef]

Opt. Commun. (3)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Opt. Eng. (2)

S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003).
[CrossRef]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[CrossRef]

Opt. Express (8)

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873-7892 (2009).
[CrossRef] [PubMed]

H. Jiang, J. Zhao, J. Di, and Ch. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836-18842 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260-19270 (2008).
[CrossRef]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008).
[CrossRef] [PubMed]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009).
[CrossRef] [PubMed]

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy--approaching the linear system limits of optical resolution,” Opt. Express 15, 6651-6663(2007).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Other (3)

U. Schnars and W. P. Jueptner, Digital Holography (Springer, 2005).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

http://www.schott.com/advanced_optics/english/download/datasheet_all_english.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup arrangement for the proposed approach: (a) on-axis and (b) off-axis input object illumination cases.

Fig. 2
Fig. 2

Scheme of the angular multiplexing provided by tilted beam illumination in the proposed approach. From (a) to (i), different oblique beam directions allow the recording of different portions of the input object diffracted wavefront. The dashed circle represents the illumination ring where tilted beams are generated.

Fig. 3
Fig. 3

Hypothetical SA for full 2D frequency space coverage generated by the addition of eight off-axis elementary apertures plus the on-axis one.

Fig. 4
Fig. 4

(a) FT of the recorded hologram and (b) magnified area (inner part of the USAF test) marked with the solid white line in (a). DC term in (a) has been blocked to enhance image contrast, and white arrows in (b) mark the resolution limits in the vertical and horizontal directions.

Fig. 5
Fig. 5

(a) and (b) are the FT of the recorded holograms for horizontal (right) and vertical (up) off-axis illuminations, respectively. Inner images magnify the area of interest (solid white rectangle). (c) and (d) correspond with the area of interest when considering the complementary horizontal (left) and vertical (down) off-axis illuminations.

Fig. 6
Fig. 6

(a) generated SA where the conventional aperture is shown with a dashed white line and (b) superresolved image.

Fig. 7
Fig. 7

USAF test rotated 45 deg: (a)–(b) are the FT of the recorded hologram when off-axis oblique (45 deg) illumination is used and a magnification of the area of interest, respectively. (c)–(d) are the equivalent images when off-axis oblique (135 deg) illumination is considered. (e) is the low-resolution image magnification obtained with on-axis illumination, (f) is the generated SA (the conventional aperture is marked with a dashed white rectangle), and (g) is the superresolved image.

Fig. 8
Fig. 8

Cell biosample case: (a) FT of the recorded hologram when on-axis illumination is considered. The inner figures marked with dotted and dashed white lines show increasing magnification of the area of interest. (b)–(d) are the equivalent images when horizontal, vertical, and oblique illuminations are used, respectively. (e) is the generated SA (the conventional aperture is marked with a dashed white rectangle). (f) is the conventional imaging mode when on-axis illumination is considered. (g) is the superresolved image. The white scale bars in the upper-right corner of (f) and (g) are 10 μm .

Fig. 9
Fig. 9

USAF test and second illumination ring: (a)–(b) are the FT of the recorded hologram when horizontal off-axis illumination of the first illumination ring is considered and a magnification over the area of interest, respectively. (c)–(d) are the equivalent images when horizontal off-axis illumination of the second illumination ring is used. (e)–(f) and (g)–(h) are the equivalent images for the first and second illumination rings, respectively, when considering vertical off-axis illumination. Finally, (i) is the conventional image provided by on-axis illumination, (j) is the generated SA considering the addition of eight off-axis apertures alongside the conventional one (marked with a dashed white rectangle), and (k) is the superresolved image.

Fig. 10
Fig. 10

(a) and (b) are magnified areas of the inner parts marked with a solid white line rectangle in cases (a) and (c) of Fig. 9, respectively. (c) plots the vertical cross sections corresponding with the lines in cases (a) and (b). The dashed curve represents the conventional image, and the solid curve is representative of the superresolved image case.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U IP i m ( x 0 , y 0 ) = t ( x 0 , y 0 ) exp { j 2 π ( ν m x 0 + ν n y 0 ) } ,
U CCD i m ( x , y ) = C exp { j k 2 d [ x 2 + y 2 ] } t ( x 0 , y 0 ) exp { j k 2 d [ x 0 2 + y 0 2 ] } exp { j 2 π [ ( x λ d ν m ) x 0 + ( y λ d ν n ) y 0 ] } d x 0 d y 0 ,
U CCD i m ( x , y ) = C exp { j k 2 d [ x 2 + y 2 ] } [ FT { t ( x 0 , y 0 ) } u , v FT { exp { j k 2 d [ x 0 2 + y 0 2 ] } } u , v ] ,
U CCD ref ( x , y ) = D exp { j k 2 d [ ( x x r ) 2 + ( y y r ) 2 ] } ,
I CCD total ( x , y ) = | U CCD total ( x , y ) | 2 = | [ U CCD i m ( x , y ) + U CCD ref ( x , y ) ] rect ( x Δ x , y Δ y ) | 2 = [ | U CCD i m | 2 + | U CCD ref | 2 + U CCD i m U CCD ref * + U CCD i m * U CCD ref ] rect ( x Δ x , y Δ y ) ,
T 1 ( u , v ) = FT { | U CCD i m | 2 rect ( x Δ x , y Δ y ) } = FT { U CCD i m } FT { U CCD i m * } FT { rect ( x Δ x , y Δ y ) } ,
T 3 ( u , v ) = FT { U CCD i m U CCD ref * rect ( x Δ x , y Δ y ) } = FT { C [ t ˜ ( x λ d ν m , y λ d ν n ) FT { exp { j k 2 d [ x 0 2 + y 0 2 ] } } u , v ] } , FT { exp { j 2 π λ d [ x r x + y r y ] } } FT { rect ( x Δ x , y Δ y ) } = C { [ t ( λ d x , λ d y ) exp { j 2 π ( ν m x + ν n y ) } ] exp { j k 2 d ( x 0 2 + y 0 2 ) } } FT { rect ( x Δ x , y Δ y ) } δ ( u x r λ d , v y r λ d )

Metrics