Abstract

We present the development of a continuous-wave method of quantifying the optical properties of a two-layered model of the human head using a broadband spectral approach. Absolute absorption and scattering properties of the upper and lower layers of phantoms with known optical properties were reconstructed from steady-state multi-distance measurements by performing differential fit analysis of the near-infrared reflectance spectrum between 700 and 1000nm. From spectra acquired at 10, 20, and 30mm, the concentration of a chromophore in the bottom layer was determined within an error of 10% in the presence of a 15mm thick top layer. These results demonstrate that our method was able to determine the optical properties of the lower layer, which represents brain, with acceptable error at specific source–detector distances.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
    [CrossRef] [PubMed]
  2. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
    [CrossRef]
  3. M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36, 807–834 (2009).
    [CrossRef] [PubMed]
  4. V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
    [CrossRef] [PubMed]
  5. M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).
  6. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
    [CrossRef] [PubMed]
  7. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagninures, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
    [CrossRef]
  8. A. Li, R. Kwong, A. Cerussi, S. Merritt, C. Hayakawa, and B. Tromberg, “Method for recovering quantitative broadband diffuse optical spectra from layered media,” Appl. Opt. 46, 4828–4833 (2007).
    [CrossRef] [PubMed]
  9. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [CrossRef]
  10. J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
    [CrossRef] [PubMed]
  11. R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
    [CrossRef] [PubMed]
  12. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003).
    [CrossRef]
  13. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
    [CrossRef] [PubMed]
  14. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  15. C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
    [CrossRef] [PubMed]
  16. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.
  17. V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
    [CrossRef]
  18. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]
  19. G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810–3821 (2001).
    [CrossRef]

2009

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36, 807–834 (2009).
[CrossRef] [PubMed]

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

2008

V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
[CrossRef]

2007

2005

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

2004

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

2003

2002

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

2001

G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810–3821 (2001).
[CrossRef]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

1998

1995

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

1994

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

1993

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

1974

Alexandrakis, G.

Arridge, S.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Barnett, A. H.

Bays, R.

Bechtel, K.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Boas, D. A.

Busch, D. R.

Cerussi, A.

Choi, J. H.

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Choi, J. M.

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

Culver, J. P.

Dale, A.

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Dognitz, N.

Essenpreis, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Fantini, S.

Faris, G. W.

Farrell, T. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Feld, M.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

Fulghum, S.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Germon, T. J.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

Gratton, E.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[CrossRef]

Greisen, G.

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36, 807–834 (2009).
[CrossRef] [PubMed]

Hayakawa, C.

Hayward, J. E.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Heiskala, J.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Hueber, D.

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Hunter, R. J.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

Kaipio, J.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Kienle, A.

Kolehmainen, V.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Kwong, R.

Lamperti, E. D.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Lau, C.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Li, A.

Maier, J. S.

Manara, A. R.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

Matcher, S. J.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

McGee, S.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Merritt, S.

Michalos, A.

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Mirkovic, J.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Nelson, R. J.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

Okada, E.

Palmer, K. F.

Patterson, M. S.

Paunescu, L. A.

Polzonetti, C.

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Pucci, O.

V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
[CrossRef]

Ross, L. M.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Rude, J.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Scepanovic, O.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Schulte, E.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Schumacher, U.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Schünke, M.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Sharieh, S.

V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
[CrossRef]

Sorensen, A. G.

Tarvainen, T.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Toronov, V.

V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
[CrossRef]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Tromberg, B.

Tunnell, J.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

van den Bergh, H.

Vauhkonen, M.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

Wagninures, G.

Wallace, M.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Webb, A.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Williams, D.

Wolf, M.

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36, 807–834 (2009).
[CrossRef] [PubMed]

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Wolf, U.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Young, A. E.

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

Yu, C. C.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Clin. Perinatol.

M. Wolf and G. Greisen, “Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate,” Clin. Perinatol. 36, 807–834 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurement of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008 (2005).
[CrossRef]

J. M. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, and D. Hueber, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt. 14, 024031 (2009).
[CrossRef] [PubMed]

J. Neurol. Neurosurg. Psychiatry

T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry 58, 477–479 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

Med. Phys.

V. Toronov, A. Webb, J. H. Choi, M. Wolf, A. Michalos, and E. Gratton, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,” Med. Phys. 28, 521–527 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol.

R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39, 177–196 (1994).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Proc. SPIE

V. Toronov, O. Pucci, and S. Sharieh, “Spectral and spatial characteristics of the differential pathlengths in non-homogeneous tissues,” Proc. SPIE 6855, 685506 (2008).
[CrossRef]

Other

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, J. Kaipio, J. Heiskala, and S. Arridge, “Modeling photon migration in tissues with the coupled radiative transfer equation and diffusion approximation,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper SH49.

M. Schünke, E. Schulte, U. Schumacher, J. Rude, L. M. Ross, and E. D. Lamperti, “Head and neuroanatomy,” in Thieme Atlas of Anatomy (Thieme, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup showing the illumination source, the two-layer phantom, and the spectrometer.

Fig. 2
Fig. 2

Absorption spectra from each homogeneous phantom. Spectra were derived using the known absorption co efficients at 690 and 830 nm . The error bars correspond to the standard deviation estimated using the full range of measured intensity data.

Fig. 3
Fig. 3

Reduced scattering coefficient spectra of the homogeneous phantoms. Spectra were derived assuming a power law relationship between the reduced scattering coefficient, Eq. (3), and using the known values at 690 and 830 nm .

Fig. 4
Fig. 4

Silicone absorption spectrum (blue curve) and specific extinction of carbon black (red curve).

Fig. 5
Fig. 5

Theoretical differential absorbance differences for the homogeneous Type I and Two-Layer I phantoms at different SD distances. The first number in each legend corresponds to the reference signal SD distance in millimeters.

Fig. 6
Fig. 6

Differential absorbance (red curve) and the best fit (blue curve) for 10 / 30 mm absorbance of the Type I homogeneous phantom.

Fig. 7
Fig. 7

Relative absorbance spectra of phantoms to demonstrate the sensitivity of the system to the bottom layer in a two-layered model.

Fig. 8
Fig. 8

Difference between the experimental spectral derivative of the absorbance for the Two-Layer I phantom and the corresponding theoretical values for the homogeneous Type I medium (red curve) and the theoretical fit of the same difference (blue curve). The data were obtained using the 10 and 30 mm SD distance combination.

Tables (2)

Tables Icon

Table 1 Values of the Carbon Black Concentration and the Associated Error in the Recovered Optical Properties of the Homogeneous and Two-Layered Phantoms a

Tables Icon

Table 2 Values of the Carbon Black Concentration and Errors in Recovered Optical Properties of the Bottom Layers of the Two-Layer Phantoms Assuming a Wrong Thickness of the Top Layer (11 mm Instead of 14 mm) a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A λ = log 10 [ S λ D N λ R λ D N λ ] ,
μ a 1 , 2 ( λ ) = μ a _ silicone ( λ ) + [ carbon black ] 1 , 2 ε ( λ ) C B ,
μ s ( λ ) = A λ α ,
μ a 1 ( λ ) μ a 2 ( λ ) = ( C 1 C 2 ) ε C B ( λ ) .
μ a _ silicone = μ a 1 C 1 ε C B ( λ ) .
Φ ( ρ , z ) = 1 2 π 0 φ ( s , z ) s J 0 ( s ρ ) d s ,
φ ( s , z ) = sinh [ α 1 ( z b + z 0 ) ] D 1 α 1 D 1 α 1 cosh [ α 1 ( l z ) ] + D 2 α 2 sinh [ α 1 ( l z ) ] D 1 α 1 cosh [ α 1 ( l + z b ) ] + D 2 α 2 sinh [ α 1 ( l + z b ) ] sinh [ α 1 ( z 0 z ) ] D 1 α 1 .
Φ h ( ρ ) = exp ( K 1 x 1 ) ( 1 + 2 D 1 z 0 ( 1 + K 1 x 1 ) / x 1 2 ) 8 π D 1 x 1 + exp ( K 1 x 2 ) ( 1 + 2 D 1 z 0 ( 1 + K 1 x 2 ) / x 2 2 ) 8 π D 1 x 2 ,
φ 2 L ( s ) = sinh [ α 1 ( z b + z 0 ) ] D 1 α 1 [ D 1 α 1 cosh [ α 1 l ] + D 2 α 2 sinh [ α 1 l ] D 1 α 1 cosh [ α 1 ( l + z b ) ] + D 2 α 2 sinh [ α 1 ( l + z b ) ] exp ( α 1 z b ) ] .

Metrics