Abstract

Spherical aberration affects vision in varying degrees depending on pupil size, accommodation, individual eye characteristics, and interpretations by the brain. We developed a spherical aberration gauge to help evaluate the correction potential of spherical aberration in human vision. Variable aberration levels are achieved with laterally shifted polynomial plates from which a user selects a setting that provides the best vision. The aberration is mapped into the pupil of the eye using a simple telescope. Calibration data are given.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
    [PubMed]
  2. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  3. N. Chateau, A. Blanchard, and D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
    [CrossRef]
  4. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
    [CrossRef]
  5. V. A. D. P. Sicam, M. Dubbelman, and R. G. L. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23, 544–549 (2006).
    [CrossRef]
  6. M. Koomen, R. Tousey, and R. Scolnik, “The spherical aberration of the eye,” J. Opt. Soc. Am. 39, 370–376 (1949).
    [CrossRef] [PubMed]
  7. W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
    [PubMed]
  8. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
    [CrossRef] [PubMed]
  9. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  10. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
    [CrossRef]
  11. A. Y. Yi and T. W. Raasch, “Design and fabrication of a freeform phase plate for high-order ocular aberration correction,” Appl. Opt. 44, 6869–6876 (2005).
    [CrossRef] [PubMed]
  12. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287–15292 (2007).
    [CrossRef] [PubMed]
  13. R. Held, “The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C.S.Harris, ed., (Lawrence Erlbaum, 1980), pp. 69–94.
  14. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
    [CrossRef] [PubMed]
  15. F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004).
    [CrossRef]
  16. J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
    [CrossRef] [PubMed]
  17. H. H. Dietze and M. J. Cox, “Correcting ocular spherical aberration with soft contact lenses,” J. Opt. Soc. Am. A 21, 473–485(2004).
    [CrossRef]
  18. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
    [CrossRef] [PubMed]
  19. R. A. Buchroeder and R. B. Hooker, “Aberration generator,” Appl. Opt. 14, 2476–2479 (1975).
    [CrossRef] [PubMed]
  20. M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997).
    [CrossRef]
  21. N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses,” J. Opt. Soc. Am. A 15, 2563–2571 (1998).
    [CrossRef]
  22. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38, pp. 86–90(1999).
    [CrossRef]
  23. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
    [CrossRef] [PubMed]
  24. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22, 1993–1996(2005).
    [CrossRef]
  25. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
    [CrossRef] [PubMed]
  26. S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
    [CrossRef]
  27. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (21 February 1967).
  28. J. Schwiegerling, Department of Ophthalmology and College of Optical Sciences, University of Arizona, 655 N. Alvernon Way, Tucson, Arizona 85711 (personal communication, 2008).
  29. See, for example, VU University Medical Centre, Amsterdam, The Netherlands, “U-specs 2009, Universal Spectacles,” http://www.u-specs.nl/.
  30. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  31. S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A 20, 1–10 (2003).
    [CrossRef]
  32. K. Seong, “Optical metrology for transmission interferometric testing,” Ph.D. dissertation (University of Arizona, 2008).

2009

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

2007

2006

V. A. D. P. Sicam, M. Dubbelman, and R. G. L. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23, 544–549 (2006).
[CrossRef]

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

2005

2004

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004).
[CrossRef]

H. H. Dietze and M. J. Cox, “Correcting ocular spherical aberration with soft contact lenses,” J. Opt. Soc. Am. A 21, 473–485(2004).
[CrossRef]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef] [PubMed]

2003

2001

2000

1999

1998

1997

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997).
[CrossRef]

1995

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

1978

W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
[PubMed]

1975

1963

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

1949

Acosta, E.

Alvarez, L. W.

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (21 February 1967).

Applegate, R.

Ares, J.

Arines, J.

Artal, P.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[CrossRef]

Atchison, D. A.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Äyräs, P.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Bará, S.

Baude, D.

Blanchard, A.

Bradu, A.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[CrossRef]

Buchroeder, R. A.

Chang, M. T.

M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997).
[CrossRef]

Charman, N.

Charman, W. N.

W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
[PubMed]

Chateau, N.

N. Chateau, A. Blanchard, and D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
[CrossRef]

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[CrossRef]

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

Choi, S. S.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

Christensen, J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Climent, V.

Collins, M. J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Cox, I. G.

Cox, M. J.

Dietze, H. H.

Doble, N.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

Dubbelman, M.

Durán, V.

Elliott, S. L.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

Fernandez, E. J.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

Fernández, E. J.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Greivenkamp, J. E.

Guirao, A.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Held, R.

R. Held, “The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C.S.Harris, ed., (Lawrence Erlbaum, 1980), pp. 69–94.

Honkanen, S.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Hooker, R. B.

Howland, B.

Howland, H. C.

Jaroszewicz, Z.

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Jennings, J. A. M.

W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
[PubMed]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Koomen, M.

Kruger, P. B.

F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004).
[CrossRef]

Lancis, J.

Li, G.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Liang, J.

López-Gil, N.

Mancebo, T.

Manzanera, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

Mathine, D. L.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

Navarro, R.

Norrby, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

Palusinski, A.

Peyghambarian, N.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Piers, P. A.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[CrossRef]

Porter, J.

Prado, P.

Prieto, P. M.

Raasch, T. W.

Rucker, F. J.

F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004).
[CrossRef]

Sasián, J. M.

A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38, pp. 86–90(1999).
[CrossRef]

M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997).
[CrossRef]

Sato, S.

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

J. Schwiegerling, Department of Ophthalmology and College of Optical Sciences, University of Arizona, 655 N. Alvernon Way, Tucson, Arizona 85711 (personal communication, 2008).

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
[CrossRef]

Scolnik, R.

Seong, K.

K. Seong, “Optical metrology for transmission interferometric testing,” Ph.D. dissertation (University of Arizona, 2008).

Sicam, V. A. D. P.

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

Tajahuerce, E.

Tousey, R.

Tuohy, S.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[CrossRef]

Valley, P.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

van der Heijde, R. G. L.

Vargas-Martín, F.

Wang, B.

Waterworth, M. D.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Werner, J. S.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

Whitefoot, H.

W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
[PubMed]

Wildsoet, C. F.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Williams, D. R.

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Ye, M.

Yi, A. Y.

Appl. Opt.

Br. J. Physiol. Opt.

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

W. N. Charman, J. A. M. Jennings, and H. Whitefoot, “The refraction of the eye in relation to spherical aberration and pupil size,” Br. J. Physiol. Opt. 32, 78–93 (1978).
[PubMed]

Invest. Ophthalmol. Vis. Sci.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophthalmol. Vis. Sci. 45, 4601–4610 (2004).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35, 1229–1233 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

V. A. D. P. Sicam, M. Dubbelman, and R. G. L. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23, 544–549 (2006).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

N. Chateau, A. Blanchard, and D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
[CrossRef]

H. H. Dietze and M. J. Cox, “Correcting ocular spherical aberration with soft contact lenses,” J. Opt. Soc. Am. A 21, 473–485(2004).
[CrossRef]

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third-order spherical and coma aberrations by use of radially symmetrical fourth-order lenses,” J. Opt. Soc. Am. A 15, 2563–2571 (1998).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
[CrossRef]

S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A 20, 1–10 (2003).
[CrossRef]

E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22, 1993–1996(2005).
[CrossRef]

J. Vis.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4, 281–287 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104(2006).
[CrossRef] [PubMed]

Proc. SPIE

M. T. Chang and J. M. Sasián, “Variable spherical aberration generators,” Proc. SPIE 3129, 217–228 (1997).
[CrossRef]

Vis. Res.

F. J. Rucker and P. B. Kruger, “The role of short-wavelength sensitive cones and chromatic aberration in the response to stationary and step accommodation stimuli,” Vis. Res. 44, 197–208 (2004).
[CrossRef]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, and M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vis. Res. 35, 313–323(1995).
[CrossRef] [PubMed]

Other

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
[CrossRef]

R. Held, “The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability, C.S.Harris, ed., (Lawrence Erlbaum, 1980), pp. 69–94.

K. Seong, “Optical metrology for transmission interferometric testing,” Ph.D. dissertation (University of Arizona, 2008).

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[CrossRef]

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (21 February 1967).

J. Schwiegerling, Department of Ophthalmology and College of Optical Sciences, University of Arizona, 655 N. Alvernon Way, Tucson, Arizona 85711 (personal communication, 2008).

See, for example, VU University Medical Centre, Amsterdam, The Netherlands, “U-specs 2009, Universal Spectacles,” http://www.u-specs.nl/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

OPD plots for two different designs: (top) large parasitic aberrations for r / a = 1 and (bottom) small parasitic aberrations for r / a = 6 . Plots generated with Zemax Raytrace Software (Zemax Development Corporation, Bellevue, Washington).

Fig. 2
Fig. 2

Keplerian telescope layout showing mapping of the aberration generator.

Fig. 3
Fig. 3

Average residual wavefront error with plate decenter. Dark curves represent plate decentering along the x axis, and light lines are for the y axis. Solid curves indicate values at the axial field, and dashed curves indicate values for a 2.5 ° field.

Fig. 4
Fig. 4

Average residual wavefront error with pupil decenter. Solid curves indicate values at the axial field, and dashed curves indicate values for a 2.5 ° field.

Fig. 5
Fig. 5

Telescope module for the left eye: (a) objective lens, (b) spherical aberration generator plates, (c) image erection assembly, (d) field lens, (e) periscope assembly, (f) eyepiece, and (g) micrometer adjustment for spherical aberration plate translation.

Fig. 6
Fig. 6

Interferograms generated by left eye module for various shift amounts: top (from left to right) 0.75 , 0.50 , and 0.25 mm ; bottom (from left to right) 0.00 , 0.25 , and 0.50 mm . Source wavelength is 594 nm .

Fig. 7
Fig. 7

Calibration curve for left eye module. Source wavelength is 594 nm , and a 6 mm diameter aperture is used.

Fig. 8
Fig. 8

Measurement data for left eye module at 1 ° off axis.

Fig. 9
Fig. 9

Measurement data for left eye module at 2.5 ° off axis.

Fig. 10
Fig. 10

Assembled spherical aberration gauge.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = k ( 1 5 x 5 + 2 3 x 3 y 2 + x y 4 ) ,
W ( x , y ) = 2 k a ( n 1 ) [ ( x 2 + y 2 ) 2 + 2 a 2 x 2 + 2 3 a 2 y 2 + 1 5 a 4 ] = κ a ( x 2 + y 2 ) 2 + 2 κ a 3 ( x 2 + y 2 ) 4 3 κ a 3 y 2 + 1 5 κ a 5 ,
W SA W def = κ a ( x 2 + y 2 ) 2 2 κ a 3 ( x 2 + y 2 ) = r 2 2 a 2 ,
W SA W asti = κ a ( x 2 + y 2 ) 2 4 3 κ a 3 y 2 = { 3 y 2 4 a 2 : x = 0 : y = 0 ,
T ( x , y ) = k ( 1 5 x 5 + 2 3 x 3 y 2 + x y 4 4 15 x 3 4 5 x y 2 + 1 10 x ) .
W 040 = 6 5 ( r 2 r 1 ) 4 Z 4 , 0 ,

Metrics