Abstract

We report a method for microfluidic multiple trapping and continuous sorting of microparticles using an optical potential landscape projected by a Dammann grating, enabling a high power-efficient approach to forming a composite two-dimensional spots array with high uniformity. The Dammann grating is fabricated in a photoresist by optical lithography. It is employed to create an optical lattice for multiple optical trapping and sorting in a mixture of polymer particles (n=1.59) and silica particles (n=1.42) with the same diameters of 3.1μm. In addition to the exponential selectivity by the projected optical landscapes, the proposed microfluidic sorting system has advantages in terms of high power efficiency and high uniformity due to the Dammann grating.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  2. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef]
  3. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
    [CrossRef]
  4. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
    [CrossRef]
  5. Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
    [CrossRef]
  6. A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
    [CrossRef]
  7. J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
    [CrossRef]
  8. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef]
  9. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
    [CrossRef]
  10. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Dynamically reconfigurable optical lattices,” Opt. Express 13, 1384–1394(2005).
    [CrossRef]
  11. I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
    [CrossRef]
  12. Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
    [CrossRef]
  13. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
    [CrossRef]
  14. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]

2008 (1)

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

2006 (2)

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

2005 (2)

2004 (4)

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

1999 (1)

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

1996 (1)

1986 (1)

1971 (1)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Arnold, F. H.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Ashkin, A.

Bjorkholm, J. E.

Burg, K. J. L.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Chu, S.

Dammann, H.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Daria, V. R.

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

Dziedzic, J. M.

Enger, J.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Eriksson, E.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Fu, Y.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Gahagan, K. T.

Gao, B. Z.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Glückstad, J.

Goksor, M.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Goksör, M.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Gortler, K.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Grier, D. G.

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Hagberg, P.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Hanstorp, D.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[CrossRef]

Ma, Z.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

Ong, L. S.

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Peng, X.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Perch-Nielsen, I. R.

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 13, 2852–2857 (2005).
[CrossRef]

Quake, S. R.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Ramser, K.

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Rodrigo, P. J.

Scherer, A.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

Spence, C.

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Sun, Y. Y.

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Swartzlander, G. A.

Wei, Y.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Yuan, X.-C.

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Ma, K. J. L. Burg, Y. Wei, X.-C. Yuan, X. Peng, and B. Z. Gao, “Laser-guidance based detection of cells with single-gene modification,” Appl. Phys. Lett. 92, 213902 (2008).
[CrossRef]

Y. Y. Sun, L. S. Ong, and X.-C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89, 141108 (2006).
[CrossRef]

Lab Chip (1)

J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab Chip 4, 196–200 (2004).
[CrossRef]

Nat. Biotechnol. (1)

A.Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nat. Biotechnol. 17, 1109–1111 (1999).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

Opt. Commun. (1)

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging b means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. E (2)

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting mesoscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901(R) (2004).
[CrossRef]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential energy landscapes,” Phys. Rev. E 70, 031108 (2004).
[CrossRef]

Proc. SPIE (1)

I. R. Perch-Nielsen, E. Eriksson, M. Goksor, J. Enger, P. J. Rodrigo, D. Hanstorp, and J. Glückstad, “Sorting particles in a microfluidic system using SLM-reconfigurable intensity patterns,” Proc. SPIE 6088, 60881H (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics