Abstract

Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300m, detecting, in particular, damselflies entering the 355nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  2. S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1031–1052.
  3. X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 5, pp. 179–432.
    [CrossRef]
  4. S. Svanberg, “Fluorescence spectroscopy and imaging of lidar targets,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 6, pp. 433–468,.
    [CrossRef]
  5. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583–3594 (2003).
    [CrossRef] [PubMed]
  6. L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: elucidating past conservation interventions,” Opt. Express 16, 6794–680 (2008).
    [CrossRef] [PubMed]
  7. M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
    [CrossRef] [PubMed]
  8. R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
    [CrossRef]
  9. T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders,” Am. Nat. 155, 583–605 (2000).
    [CrossRef] [PubMed]
  10. M. Joron and P. M. Brakefield, “Captivity masks inbreeding effects on male mating success in butterflies,” Nature 424, 191–194 (2003).
    [CrossRef] [PubMed]
  11. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshank, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853–5863 (2005).
    [CrossRef] [PubMed]
  12. K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, “Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines,” Appl. Opt. 45, 1839–1843(2006).
    [CrossRef] [PubMed]
  13. D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, “Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines,” Appl. Opt. 46, 3007–3012 (2007).
    [CrossRef] [PubMed]
  14. M. Brydegaard, Z. G. Guan, M. Wellenreuther, and S. Svanberg, “Insect monitoring with fluorescence lidar techniques: feasibility study,” Appl. Opt. 48, 5668–5677 (2009).
    [CrossRef] [PubMed]
  15. C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
    [CrossRef]
  16. P. S. Corbet, Dragonflies: Behavior and Ecology of Odonata Essex (Harley, 1999).
  17. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
    [CrossRef]
  18. R. Johansson, System Modeling and Identification (Prentice Hall, 1993).
  19. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526–530 (2007).
    [CrossRef]
  20. R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
    [CrossRef]
  21. K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
    [CrossRef]
  22. C. N. Parmesan, “Climate and species’ range,” Nature 382, 765–766 (1996).
    [CrossRef]
  23. C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
    [CrossRef]
  24. K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
    [CrossRef] [PubMed]
  25. K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
    [PubMed]
  26. K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
    [CrossRef]
  27. G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).
  28. A. Cordero, “Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly,” J. Insect Behav. 12, 27–37 (1999).
    [CrossRef]
  29. A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
    [CrossRef] [PubMed]
  30. K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
    [CrossRef]
  31. L. Ward and P. J. Mill, “Habitat factors influencing the presence of adult Calopteryx splendens (odonata: Zygoptera),” Euro. J. Entomol. 102, 47–51 (2005).
  32. D. W. Gibbons and D. Pain, “The influence of river flow rate on the breeding behaviour of calopteryx damselflies,” J. Anim. Ecol. 61, 283–289 (1992).
    [CrossRef]
  33. F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
    [CrossRef] [PubMed]
  34. P. M. Hammond, “Species inventory,” in Global Diversity Status of the Earth Living Resources, B.Groombridge, ed. (Chapman and Hall, 1992), pp. 17–39.
  35. J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
    [CrossRef] [PubMed]

2010 (1)

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (3)

M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
[CrossRef] [PubMed]

D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, “Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines,” Appl. Opt. 46, 3007–3012 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526–530 (2007).
[CrossRef]

2006 (2)

K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, “Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines,” Appl. Opt. 45, 1839–1843(2006).
[CrossRef] [PubMed]

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

2005 (6)

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

L. Ward and P. J. Mill, “Habitat factors influencing the presence of adult Calopteryx splendens (odonata: Zygoptera),” Euro. J. Entomol. 102, 47–51 (2005).

J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshank, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853–5863 (2005).
[CrossRef] [PubMed]

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

2004 (2)

K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
[CrossRef] [PubMed]

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

2003 (2)

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583–3594 (2003).
[CrossRef] [PubMed]

M. Joron and P. M. Brakefield, “Captivity masks inbreeding effects on male mating success in butterflies,” Nature 424, 191–194 (2003).
[CrossRef] [PubMed]

2002 (1)

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

2000 (2)

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders,” Am. Nat. 155, 583–605 (2000).
[CrossRef] [PubMed]

1999 (2)

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

A. Cordero, “Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly,” J. Insect Behav. 12, 27–37 (1999).
[CrossRef]

1996 (1)

C. N. Parmesan, “Climate and species’ range,” Nature 382, 765–766 (1996).
[CrossRef]

1992 (1)

D. W. Gibbons and D. Pain, “The influence of river flow rate on the breeding behaviour of calopteryx damselflies,” J. Anim. Ecol. 61, 283–289 (1992).
[CrossRef]

af Klinteberg, C.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Anderson, E.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Anderson, G. Q. A.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Andersson-Engels, S.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Andreasson, M.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Asher, J.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Baguette, M.

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Bai, Z.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Balzter, H.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Barup, K.

Bellamy, P. E.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Bischof, C.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Blackford, S.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Bradbury, R. B.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Brakefield, P. M.

M. Joron and P. M. Brakefield, “Captivity masks inbreeding effects on male mating success in butterflies,” Nature 424, 191–194 (2003).
[CrossRef] [PubMed]

Bromenshank, J. J.

Brydegaard, M.

Campero, M.

M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
[CrossRef] [PubMed]

Carlsten, J. L.

Carsten, J. L.

Case, T. J.

T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders,” Am. Nat. 155, 583–605 (2000).
[CrossRef] [PubMed]

Cecchi, G.

Chapin, F. S.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Chaput-Bardy, A.

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Chu, X.

X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 5, pp. 179–432.
[CrossRef]

Churnside, J. H.

Clarke, R. T.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Clawges, R. M.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Conrad, K. F.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Conti, C.

Corbet, P. S.

P. S. Corbet, Dragonflies: Behavior and Ecology of Odonata Essex (Harley, 1999).

Cordero, A.

A. Cordero, “Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly,” J. Insect Behav. 12, 27–37 (1999).
[CrossRef]

Davenport, I. J.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Demmel, J.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Descimon, B.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Díaz, S.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Dongarra, J.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Du Croz, J.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Dunkle, D. L.

Edner, H.

Eviner, V. T.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Fox, R.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Gibbons, D. W.

D. W. Gibbons and D. Pain, “The influence of river flow rate on the breeding behaviour of calopteryx damselflies,” J. Anim. Ecol. 61, 283–289 (1992).
[CrossRef]

Gould, W. A.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Greenbaum, A.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Greenwood, J. J. D.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Gregoire, A.

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Grönlund, R.

Guan, Z. G.

Hällström, J.

Hammarling, S.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Hammond, P. M.

P. M. Hammond, “Species inventory,” in Global Diversity Status of the Earth Living Resources, B.Groombridge, ed. (Chapman and Hall, 1992), pp. 17–39.

Harvey, I. F.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Henderson, C. B.

Hickling, R.

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

Hilfert-Rüppel, D.

G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).

Hill, J. K.

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Hill, R. A.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526–530 (2007).
[CrossRef]

Hinsley, S. A.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Hobbie, S. E.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Hoffman, D. S.

Hooper, D. U.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Huntley, B.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Johansson, A.

Johansson, R.

R. Johansson, System Modeling and Identification (Prentice Hall, 1993).

Joron, M.

M. Joron and P. M. Brakefield, “Captivity masks inbreeding effects on male mating success in butterflies,” Nature 424, 191–194 (2003).
[CrossRef] [PubMed]

Kaila, L.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Kotiaho, J. S.

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

Kullberg, J.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Lavore, S.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Lawton, J. H.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Lognoli, D.

Luojumäki, M.

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

Mack, M. C.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Martinuzzi, S.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Mason, D. C.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

McKenney, A.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

Melton, C.

Mill, P. J.

L. Ward and P. J. Mill, “Habitat factors influencing the presence of adult Calopteryx splendens (odonata: Zygoptera),” Euro. J. Entomol. 102, 47–51 (2005).

Moore, A.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526–530 (2007).
[CrossRef]

Naylor, R. L.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Nehrir, A. R.

Nugent, P. W.

Ollevier, F.

M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
[CrossRef] [PubMed]

Pagano, A.

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Pain, D.

D. W. Gibbons and D. Pain, “The influence of river flow rate on the breeding behaviour of calopteryx damselflies,” J. Anim. Ecol. 61, 283–289 (1992).
[CrossRef]

Palombi, L.

Papen, G. C.

X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 5, pp. 179–432.
[CrossRef]

Parmesan, C. N.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

C. N. Parmesan, “Climate and species’ range,” Nature 382, 765–766 (1996).
[CrossRef]

Preston, C. D.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Raimondi, V.

Rantala, M. J.

K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
[CrossRef] [PubMed]

Rehfeldt, G.

G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).

Repasky, K. S.

Reynolds, H. L.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Roy, D. B.

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Rüppel, G.

G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).

Ryrholm, C.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

SalaI, O. E.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Sandström, O.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Scheppele, R.

Schütte, C.

G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).

Secondi, J.

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Seldomridge, N. L.

Shaw, J. A.

Sherrat, T. N.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Sorensen, D.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

Spangler, L. H.

Steganescu, C.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Stoks, R.

M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
[CrossRef] [PubMed]

Suhonen, J.

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
[CrossRef] [PubMed]

Svanberg, S.

M. Brydegaard, Z. G. Guan, M. Wellenreuther, and S. Svanberg, “Insect monitoring with fluorescence lidar techniques: feasibility study,” Appl. Opt. 48, 5668–5677 (2009).
[CrossRef] [PubMed]

L. Palombi, D. Lognoli, V. Raimondi, G. Cecchi, J. Hällström, K. Barup, C. Conti, R. Grönlund, A. Johansson, and S. Svanberg, “Hyperspectral fluorescence lidar imaging at the Colosseum, Rome: elucidating past conservation interventions,” Opt. Express 16, 6794–680 (2008).
[CrossRef] [PubMed]

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583–3594 (2003).
[CrossRef] [PubMed]

S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1031–1052.

S. Svanberg, “Fluorescence spectroscopy and imaging of lidar targets,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 6, pp. 433–468,.
[CrossRef]

Tammaru, T.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Taper, M. L.

T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders,” Am. Nat. 155, 583–605 (2000).
[CrossRef] [PubMed]

Telfer, M. G.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Tennent, W. J.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Thomas, C. D.

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Thomas, C. J.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Thomas, J. A.

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Tynkkynen, K.

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
[CrossRef] [PubMed]

Vierling, K. T.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Vierling, L. A.

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Vitousek, P. M.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Ward, L.

L. Ward and P. J. Mill, “Habitat factors influencing the presence of adult Calopteryx splendens (odonata: Zygoptera),” Euro. J. Entomol. 102, 47–51 (2005).

Warren, M.

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

Weibring, P.

Wellenreuther, M.

Whitfield, K.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Willson, K. H.

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Wilson, J. D.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Wilson, J. J.

Wittingham, M. J.

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

Zavaleta, E. S.

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Am. Nat. (1)

T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species borders,” Am. Nat. 155, 583–605 (2000).
[CrossRef] [PubMed]

Anim. Behav. (1)

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299–306(2006).
[CrossRef]

Appl. Opt. (4)

Ecography (1)

K. F. Conrad, K. H. Willson, K. Whitfield, I. F. Harvey, C. J. Thomas, and T. N. Sherrat, “Characteristics of dispersing Ischnura elegans and Coenagrion puella (odonata): age, sex, size morph and ectoparasitism,” Ecography 25, 439–445(2002).
[CrossRef]

Environ. Toxicol. (1)

M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572–581 (2007).
[CrossRef] [PubMed]

Euro. J. Entomol. (1)

L. Ward and P. J. Mill, “Habitat factors influencing the presence of adult Calopteryx splendens (odonata: Zygoptera),” Euro. J. Entomol. 102, 47–51 (2005).

Evolution (1)

K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific aggression causes negative selection on sexual characters,” Evolution 59, 1838–1843 (2005).
[PubMed]

Front. Ecol. Environ. (1)

K. T. Vierling, L. A. Vierling, W. A. Gould, S. Martinuzzi, and R. M. Clawges, “Lidar: Shedding new light on habitat characterization and modeling,” Front. Ecol. Environ. 6, 90–98 (2008).
[CrossRef]

Glob. Change Biol. (1)

R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British odonata,” Glob. Change Biol. 11, 502–506 (2005).
[CrossRef]

Ibis (1)

R. B. Bradbury, R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Balzter, G. Q. A. Anderson, M. J. Wittingham, I. J. Davenport, and P. E. Bellamy, “Modeling relationships between birds and vegetation structure using airborne lidar data: a review with case studies from agricultural and woodland environments,” Ibis 147, 443–452 (2005).
[CrossRef]

J. Anim. Ecol. (1)

D. W. Gibbons and D. Pain, “The influence of river flow rate on the breeding behaviour of calopteryx damselflies,” J. Anim. Ecol. 61, 283–289 (1992).
[CrossRef]

J. Evol. Biol. (1)

K. Tynkkynen, M. J. Rantala, and J. Suhonen, “Interspecific aggression and character displacement in the damselfly Calopteryx splendens,” J. Evol. Biol. 17, 759–767 (2004).
[CrossRef] [PubMed]

J. Insect Behav. (1)

A. Cordero, “Forced copulations and female contact guarding at a high male density in a Calopterygid damselfly,” J. Insect Behav. 12, 27–37 (1999).
[CrossRef]

Nat. Photon. (1)

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photon. 1, 526–530 (2007).
[CrossRef]

Nature (4)

M. Joron and P. M. Brakefield, “Captivity masks inbreeding effects on male mating success in butterflies,” Nature 424, 191–194 (2003).
[CrossRef] [PubMed]

C. N. Parmesan, “Climate and species’ range,” Nature 382, 765–766 (1996).
[CrossRef]

C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579–583 (1999).
[CrossRef]

F. S. Chapin, E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavore, O. E. SalaI, S. E. Hobbie, M. C. Mack, and S. Díaz, “Consequences of changing biodiversity,” Nature 405, 234–242 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

PLoS ONE (1)

A. Chaput-Bardy, A. Gregoire, M. Baguette, A. Pagano, and J. Secondi, “Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens,” PLoS ONE 5, e10694(2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005).
[CrossRef]

Science (1)

J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, and J. H. Lawton, “Comparative losses of British butterflies, birds, and plants and the global extinction crisis,” Science 303, 1879–1881 (2004).
[CrossRef] [PubMed]

Other (9)

P. M. Hammond, “Species inventory,” in Global Diversity Status of the Earth Living Resources, B.Groombridge, ed. (Chapman and Hall, 1992), pp. 17–39.

G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas (Westarp Wissenschaften, 2005).

P. S. Corbet, Dragonflies: Behavior and Ecology of Odonata Essex (Harley, 1999).

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s Guide, 3rd ed. (Society for Industrial and Applied Mathematics, 1999).
[CrossRef]

R. Johansson, System Modeling and Identification (Prentice Hall, 1993).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1031–1052.

X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 5, pp. 179–432.
[CrossRef]

S. Svanberg, “Fluorescence spectroscopy and imaging of lidar targets,” in Laser Remote SensingT.Fujii and T.Fukuchi, eds. (CRC, 2005), Chap. 6, pp. 433–468,.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Geographic diagram of the measurement locations. The inserted scenery picture is taken from the indicated position and direction; also shown is a male C. splendens damselfly. (b) Key equipment/components of the fluorescence lidar (PMT-1 is for detection of elastic scattering, while PMT-2 and PMT-3 are for yellow and blue bands of fluorescence, respectively).

Fig. 2
Fig. 2

(a) Three lidar paths are shown on a satellite map; numbers indicate the lidar–target distances in meters; (b) lidar echoes from the static targets in Path I (top), Path II (middle), and Path III (bottom).

Fig. 3
Fig. 3

(a) Setup for the test-range measurements, and (b) range-resolved signals of the three channels, from two serially placed damselflies marked with different dyes (Coumarin 102 and Rhodamine 6G).

Fig. 4
Fig. 4

Fluorescence spectra of three dye powders used in the field experiments, with excitation wavelength at 355 nm . The dashed–dotted line indicates the cutoff wavelength of the dicroic filter.

Fig. 5
Fig. 5

(a) Lidar signals showing different events at Site III, and (b) the scatter plot showing the fluorescence properties of three types of dyes; the crosses and the round marks indicate the calibrating dye tubes and the dusted damselflies, respectively.

Fig. 6
Fig. 6

Spatial distributions of the flying damselflies at (a) Site I, (b) Site II, and (c) Site III. The colored histograms in (c) indicate dusted-and-released damselflies. The females marked with blue dye and males marked with green dye belong to the species C. splendens, whereas the males marked with red dye are C. virgo.

Fig. 7
Fig. 7

(c) Measured counts of all insects (gray) and damselflies only (black) activity correlated to (a) the wind speed and (b) the temperature, at Site I. The inset of (c) shows the details of the histogram corresponding to damselflies.

Fig. 8
Fig. 8

Three days of measurements at Site III. Gray and colored histograms indicate unmarked and dusted damselflies, respectively. Times for release of the dusted damselflies are marked. No measurements are performed during the periods marked by cross-hatching.

Fig. 9
Fig. 9

(a) Typical raw echo return after subtraction of “empty” curves (see the text). (b) Signal from the same shot after removing the quasi-static contribution from electronic oscillations, etc. The hit was detected on 29 June 2009, 11:35:27. (c) The insects give rise to a skewness in the intensity histogram. The dotted curves are the negative values. The separation indicates that the insects do, in fact, give an increased intensity return.

Fig. 10
Fig. 10

False color RGB representation of 25 s of lidar data with the quasi-static signal removed. Blue, elastic; green, blue fluorescence; red, yellow fluorescence. The inorganic road dust from a passing car gives rise to distributed elastic scattering signals, moving in the wind. The insect signatures appear only for a fraction of a second.

Metrics