Abstract

We studied the nonlinear signal generated in the fiber at an anti-Stokes wavelength during the delivery of the picosecond (ps) pump and Stokes beams in coherent anti-Stokes Raman scattering (CARS) microscopy. A small non-phase-matched four-wave mixing (FWM) signal was prevalently observed in the fiber at the power level where other nonlinear processes, including self-phase modulation and cross-phase modulation, were well suppressed. We analyzed the features of the FWM signal generation by varying the location of temporal overlap between two input pulses in the fiber to compare this to the CARS signal generated in the sample. Numerical modeling based on the nonlinear Schrödinger equation was also conducted and clearly explains the results in the experiment. In addition, we experimentally verified the interferometric feature of this FWM signal with the CARS signal by employing a phase-shifting unit, which potentially suggests the use of the FWM signal as a local oscillator for the interferometric CARS system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
    [CrossRef]
  3. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
    [CrossRef]
  4. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  5. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352(1982).
    [CrossRef] [PubMed]
  6. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
    [CrossRef] [PubMed]
  7. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  8. H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
    [CrossRef] [PubMed]
  9. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432(2006).
    [CrossRef] [PubMed]
  10. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18, 2380–2388 (2010).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  12. E. S. Lee and J. W. Hahn, “Relative phase control between two successive coherent anti-Stokes Raman-scattering signals for the recovery of spectral lines,” Appl. Opt. 33, 8302–8305(1994).
    [CrossRef] [PubMed]
  13. E. R. Andresen, S. R. Keiding, and E. O. Potma, “Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy,” Opt. Express 14, 7246–7251(2006).
    [CrossRef] [PubMed]
  14. J. Y. Lee, E. S. Lee, and Y. S. Yoo, “Novel equipment setup simplifies nonlinear interferometric microscopy,” SPIE Newsroom, doi: 10.1117/2.1200609.0411 (2006) .
    [CrossRef]
  15. E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

2008 (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

2007 (2)

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
[CrossRef] [PubMed]

2006 (2)

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1996 (1)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1982 (1)

1974 (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Andresen, E. R.

Bahlmann, K.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Balu, M.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Chen, Z.

Cheng, J. X.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Duncan, M. D.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432(2006).
[CrossRef] [PubMed]

Fu, L.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

Ganikhanov, F.

Gryczynski, I.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Gu, M.

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

Hahn, J. W.

Hell, S. W.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Keiding, S. R.

Lakowicz, J. R.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Langohr, I. M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

Lee, E. S.

E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
[CrossRef] [PubMed]

E. S. Lee and J. W. Hahn, “Relative phase control between two successive coherent anti-Stokes Raman-scattering signals for the recovery of spectral lines,” Appl. Opt. 33, 8302–8305(1994).
[CrossRef] [PubMed]

J. Y. Lee, E. S. Lee, and Y. S. Yoo, “Novel equipment setup simplifies nonlinear interferometric microscopy,” SPIE Newsroom, doi: 10.1117/2.1200609.0411 (2006) .
[CrossRef]

Lee, J. Y.

E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
[CrossRef] [PubMed]

J. Y. Lee, E. S. Lee, and Y. S. Yoo, “Novel equipment setup simplifies nonlinear interferometric microscopy,” SPIE Newsroom, doi: 10.1117/2.1200609.0411 (2006) .
[CrossRef]

Légaré, F.

Liu, G.

Malak, H. M.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Manuccia, T. J.

Potma, E. O.

Reintjes, J.

Schrader, M.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Soini, A.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Sturek, M.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

Tromberg, B. J.

Wang, H. W.

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432(2006).
[CrossRef] [PubMed]

Yoo, Y. S.

E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
[CrossRef] [PubMed]

J. Y. Lee, E. S. Lee, and Y. S. Yoo, “Novel equipment setup simplifies nonlinear interferometric microscopy,” SPIE Newsroom, doi: 10.1117/2.1200609.0411 (2006) .
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Arterioscl. Thromb. Vasc. Biol. (1)

H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscl. Thromb. Vasc. Biol. 29, 1342–1342 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996).
[CrossRef]

E. S. Lee, J. Y. Lee, and Y. S. Yoo, “Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications,” J. Biomed. Opt. 12, 024010 (2007).
[CrossRef] [PubMed]

J. Microsc. (1)

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other (2)

J. Y. Lee, E. S. Lee, and Y. S. Yoo, “Novel equipment setup simplifies nonlinear interferometric microscopy,” SPIE Newsroom, doi: 10.1117/2.1200609.0411 (2006) .
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the detection of both FWM and CARS signals. The long pass filter was used for blocking the FWM signal, and the phase-shifting unit (PSU) was employed to measure the interferometric CARS fringes. BS, beam splitter; DM, dichroic mirror; OL, objective lens; CL, condenser lens; BPF, bandpass filter; PMT, photomultiplier tube.

Fig. 2
Fig. 2

(a) Schematic representation of delay A, delay B, and delay C between the pump and the Stokes beams. (b) The characteristics of nonlinear signal generation in the experiment for the SMF and LMA PCF with different temporal overlaps (delays A, B, and C). Upper figure, normal SMF with a length of 0.9 m ; middle figure, normal SMF with 2.5 m ; lower figure, LMA PCF with 0.8 m . The locations of A, B, and C indicate the temporal overlap described in (a).

Fig. 3
Fig. 3

Numerical calculation of FWM generation in 0.9 m long SMF. (a) Spectral properties at the fiber end. (b) Calculated intensity around the anti-Stokes wavelength at the fiber end with different delays. (c) Changes of the FWM signal intensity along the fiber length for delays A, B, and C, which corresponds to the temporal overlaps of two pulses at the fiber front, middle, and end, respectively, as described in Fig. 2a.

Fig. 4
Fig. 4

(a) Interference fringes measured from a fixed point of the sample in an interferometric CARS setup. (b) Interferometric CARS imaging of 3 μm polystyrene beads spread in cosmetic emulsion. (c) Pure CARS imaging of the same sample.

Metrics