Abstract

We evaluate the imaging characteristics of an integrated optical imaging element that is used to obtain images from opposite directions in one imaging sensor for a three-dimensional eye-gaze detection system. The element consists of a transmission-type holographic imaging element, a reflection-type holographic imaging element, and a noise reduction filter. In the evaluation of the imaging characteristics, modulation transfer functions of both the reflection-type and the transmission-type holographic imaging elements are evaluated. Results indicate that both holographic imaging elements have enough resolution, even under white-light illumination conditions, for eye-gaze detection. We also demonstrate the simultaneous detection of images by an artificial eye and objects by using the integrated element under white light or sunlight.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kress and P. Meyrueis, Digital Diffractive Optics: Introduction to Planar Diffractive Optics and Related Technology(Wiley, 2000).
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 9.
  3. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004).
    [CrossRef] [PubMed]
  4. W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581–3599(2004).
    [CrossRef] [PubMed]
  5. I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
    [CrossRef]
  6. Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
    [CrossRef]
  7. M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.
  8. M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
    [CrossRef]
  9. E. B. Charmpagne, “Nonparaxial imaging, magnification, and aberration properties in holography,” J. Opt. Soc. Am. 57, 51–55 (1967).
    [CrossRef]
  10. J. N. Latta, “Computer-based analysis of hologram imagery and aberrations. I. Hologram types and their nonchromatic aberrations,” Appl. Opt. 10, 599–608 (1971).
    [CrossRef] [PubMed]
  11. J. N. Latta, “Computer-based analysis of hologram imagery and aberrations. II. Aberrations induced by a wavelength shift,” Appl. Opt. 10, 609–618 (1971).
    [CrossRef] [PubMed]
  12. M. V. Collados, A. M. Lopez, J. Atencia, and M. Quintanilla, “Partitioned-field holographic lenses composed of three noncentered uniaxial systems,” Appl. Opt. 42, 6445–6451 (2003).
    [CrossRef] [PubMed]

2009

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

2007

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

2004

2003

2001

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

1971

1967

Atencia, J.

Barbastathis, G.

Charmpagne, E. B.

Collados, M. V.

Endo, T.

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 9.

Kasai, I.

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Kitagawa, Y.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Kosaka, N.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics: Introduction to Planar Diffractive Optics and Related Technology(Wiley, 2000).

Latta, J. N.

Liu, W.

Lopez, A. M.

Matoba, O.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Matsumoto, T.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics: Introduction to Planar Diffractive Optics and Related Technology(Wiley, 2000).

Mizuno, A.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Ono, M.

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Psaltis, D.

Quintanilla, M.

Sinha, A.

Takizawa, Y.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

Tanijir, Y.

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Ueda, H.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Yoshimura, T.

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

Zhou, M.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Appl. Opt.

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

M. Zhou, Y. Kitagawa, O. Matoba, Y. Takizawa, T. Matsumoto, H. Ueda, A. Mizuno, and N. Kosaka, “Background noise reduction in an integrated volume holographic imaging element for 3D eye-gaze detection system,” Jpn. J. Appl. Phys. 48, 09LE04(2009).
[CrossRef]

Y. Takizawa, Y. Kitagawa, H. Ueda, O. Matoba, and T. Yoshimura, “Imaging characteristics of transmission-type volume holographic imaging elements,” Jpn. J. Appl. Phys. 46, 605–611 (2007).
[CrossRef]

Opt. Rev.

I. Kasai, Y. Tanijir, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Other

B. Kress and P. Meyrueis, Digital Diffractive Optics: Introduction to Planar Diffractive Optics and Related Technology(Wiley, 2000).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 9.

M. Ono, O. Matoba, M. Zhou, Y. Kitagawa, H. Ueda, N. Kosaka, and A. Mizuno, “Integrated holographic imaging element for three-dimensional eye-gaze detection system,” in Information Photonics 2008 technical digest (Optical Society of Japan, 2008), pp. 192–193.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Concept of wearable glasses with integrated VHIEs for a 3D eye-gaze detection system.

Fig. 2
Fig. 2

Optical setup for VHIE fabrication; BS, beam splitter; M, mirror; MBS, movable beam splitter; MM, movable mirror; OL, object lens; P, pinhole; S, shutter.

Fig. 3
Fig. 3

Optical setup for evaluation of imaging characteristics of the integrated VHIE. Here, the CCD camera with a camera lens is shown.

Fig. 4
Fig. 4

Ideal image of USAF test patterns obtained by using a convex lens instead of VHIE under white-light illumination.

Fig. 5
Fig. 5

Reconstructed images of USAF test patterns obtained by using a reflection-type VHIE under white-light illumination. The spatial frequencies of the central patterns are (a) 1.12 mm / line , (b) 1.41 mm / line , (c) 1.78 mm / line , and (d) 2.24 mm / line .

Fig. 6
Fig. 6

Modulation transfer functions of an integrated VHIE under white-light conditions: (a) MTF of the reflection image and (b) MTF of the transmission image.

Fig. 7
Fig. 7

Spectral reflectance of the reflection-type VHIE.

Fig. 8
Fig. 8

Schematic of the imaging experiment.

Fig. 9
Fig. 9

Image detected by an integrated VHIE obtained in the laboratory under white-light illumination.

Fig. 10
Fig. 10

Image detected by an integrated VHIE obtained under sunlight illumination.

Metrics