Abstract

We present a real-time time-domain Doppler optical coherence tomography (OCT) system based on the zero-crossing method for velocity measurements of fluid flows with attainable velocities up to 10m/s. In the current implementation, one-dimensional and two-dimensional velocity profiles of fluid flows ranging from 1cm/s to more than 3m/s were obtained for both laminar and turbulent flows. The line rate was approximately 500Hz, and the images were treated in real time. This approach has the advantage of providing reliable velocity maps free from phase aliasing or other artifacts common to several OCT systems. The system is particularly well suited for investigating complex velocity profiles, especially in the presence of steep velocity gradients.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  3. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
    [CrossRef] [PubMed]
  4. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [CrossRef] [PubMed]
  5. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef] [PubMed]
  6. Z. Xu, L. Carrion, and R. Maciejko, “An assessment of the Wigner distribution method in Doppler OCT,” Opt. Express 15, 14738–14749 (2007).
    [CrossRef] [PubMed]
  7. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  8. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42, 4606–4611 (2003).
    [CrossRef] [PubMed]
  9. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
    [CrossRef] [PubMed]
  10. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450(2000).
    [CrossRef]
  11. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
    [CrossRef]
  12. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  14. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef] [PubMed]
  15. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  16. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13, 5234–5239 (2005).
    [CrossRef] [PubMed]
  17. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
    [CrossRef] [PubMed]
  18. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
    [CrossRef] [PubMed]
  19. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32, 506–508 (2007).
    [CrossRef] [PubMed]
  20. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32, 1587–1589(2007).
    [CrossRef] [PubMed]
  21. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422(2007).
    [CrossRef] [PubMed]
  22. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase-Unwrapping: Theory, Algorithm, and Software (Wiley-Interscience, 1998).
  23. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32, 253–255 (2007).
    [CrossRef] [PubMed]
  24. B. J. Vakoc, S. H. Yun, J. F. De Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [CrossRef] [PubMed]
  25. D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29, 399–434(1997).
  26. M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007).
    [CrossRef]
  27. S. J. Lee, “Optical methods in flow measurement,” in Handbook of Optical Metrology: Principles and Applications, T.Yoshizawa, ed. (CRC Press, 2008).
  28. G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
    [CrossRef]
  29. D. A. Zimnyakov and V. V. Tuchin, “Speckle correlometry,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
    [CrossRef]
  30. Z. Luo, Z. Yuan, M. Tully, Y. Pan, and C. Du, “Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography,” Appl. Opt. 48, D247–D255 (2009).
    [CrossRef] [PubMed]
  31. R. W. A. Scarr, “Zero crossings as a means of obtaining spectral information in speech analysis,” IEEE Trans. Audio Electroacoust. 16, 247–255 (1968).
    [CrossRef]
  32. D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
    [CrossRef] [PubMed]
  33. Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16, 4394–4412 (2008).
    [CrossRef] [PubMed]
  34. G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
    [CrossRef]
  35. L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
    [CrossRef]

2009 (3)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Z. Luo, Z. Yuan, M. Tully, Y. Pan, and C. Du, “Quantification of cocaine-induced cortical blood flow changes using laser speckle contrast imaging and Doppler optical coherence tomography,” Appl. Opt. 48, D247–D255 (2009).
[CrossRef] [PubMed]

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

2008 (1)

2007 (6)

2006 (2)

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (3)

2002 (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

2000 (1)

1999 (1)

1997 (5)

1995 (2)

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1968 (1)

R. W. A. Scarr, “Zero crossings as a means of obtaining spectral information in speech analysis,” IEEE Trans. Audio Electroacoust. 16, 247–255 (1968).
[CrossRef]

1961 (1)

D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
[CrossRef] [PubMed]

Adler, D. C.

Ahn, Y.-C.

Alex Vitkin, I.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Barton, J. K.

Berisha, F.

Bisaillon, C.-E.

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

Blatter, C.

Bonesi, M.

M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007).
[CrossRef]

Boppart, S. A.

Boudoux, C.

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Bouma, B. E.

Carrion, L.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chinn, S. R.

Churmakov, D.

M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007).
[CrossRef]

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Dave, D.

De Boer, J. F.

Drexler, W.

Du, C.

Dufour, M.

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franklin, D. L.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Gauthier, B.

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase-Unwrapping: Theory, Algorithm, and Software (Wiley-Interscience, 1998).

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Guenat, O.

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Hamel, E.

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32, 506–508 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Ippen, E. P.

Izatt, J. A.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Jung, W.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kartner, F. X.

Kolios, M. C.

Ku, D. N.

D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29, 399–434(1997).

Lamouche, G.

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Lasser, T.

Leblanc-Hotte, A.

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Lee, S. J.

S. J. Lee, “Optical methods in flow measurement,” in Handbook of Optical Metrology: Principles and Applications, T.Yoshizawa, ed. (CRC Press, 2008).

Leitgeb, R. A.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, S.

Luo, Z.

Maciejko, R.

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16, 4394–4412 (2008).
[CrossRef] [PubMed]

Z. Xu, L. Carrion, and R. Maciejko, “An assessment of the Wigner distribution method in Doppler OCT,” Opt. Express 15, 14738–14749 (2007).
[CrossRef] [PubMed]

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

Malekafzali, A.

Marks, D. L.

Meglinski, I.

M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007).
[CrossRef]

Milner, T. E.

Mok, A.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Monchalin, J.-P.

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

Morgner, U.

Morofke, D.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

Nilsson, G. E.

G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Oldenburg, A. L.

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Pan, Y.

Park, B. H.

Pedersen, C. J.

Pekar, J.

Pierce, M. C.

Pitris, C.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase-Unwrapping: Theory, Algorithm, and Software (Wiley-Interscience, 1998).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Reynolds, J. J.

Rollins, A. M.

Rushmer, R. F.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
[CrossRef] [PubMed]

Salerud, E. G.

G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Scarr, R. W. A.

R. W. A. Scarr, “Zero crossings as a means of obtaining spectral information in speech analysis,” IEEE Trans. Audio Electroacoust. 16, 247–255 (1968).
[CrossRef]

Schlegel, W.

D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
[CrossRef] [PubMed]

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seng-Yue, E.

Shure, M. A.

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Strömberg, N. O. T.

G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Stromski, S.

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Tuchin, V. V.

D. A. Zimnyakov and V. V. Tuchin, “Speckle correlometry,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Tully, M.

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. De Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Villiger, M. L.

Vitkin, I. A.

Wang, X.

Wang, X. J.

Wårdell, K.

G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Wojtkowski, M.

Xu, Z.

Yang, V. X. D.

Yazdanfar, S.

Yuan, Z.

Yun, S. H.

Zhao, Y.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Zimnyakov, D. A.

D. A. Zimnyakov and V. V. Tuchin, “Speckle correlometry,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Audio Electroacoust. (1)

R. W. A. Scarr, “Zero crossings as a means of obtaining spectral information in speech analysis,” IEEE Trans. Audio Electroacoust. 16, 247–255 (1968).
[CrossRef]

Meas. Sci. Technol. (1)

M. Bonesi, D. Churmakov, and I. Meglinski, “Study of flow dynamics in complex vessels using Doppler optical coherence tomography,” Meas. Sci. Technol. 18, 3279–3286 (2007).
[CrossRef]

Nature Medicine (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nature Medicine 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Commun. (2)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (13)

D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32, 253–255 (2007).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450(2000).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32, 506–508 (2007).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32, 1587–1589(2007).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

G. Lamouche, C.-E. Bisaillon, M. Dufour, B. Gauthier, R. Maciejko, and J.-P. Monchalin, “Optical coherence tomography for industrial and biomedical applications,” Proc. SPIE 6341, 63410T (2006).
[CrossRef]

L. Carrion, E. Hamel, A. Leblanc-Hotte, C. Boudoux, O. Guenat, and R. Maciejko, “Characterization of microfluidic systems with Doppler optical coherence tomography,” Proc. SPIE 7386, 73860B (2009).
[CrossRef]

Science (2)

D. L. Franklin, W. Schlegel, and R. F. Rushmer, “Blood flow measured by Doppler frequency shift of back-scattered ultrasound,” Science 134, 564–565 (1961).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase-Unwrapping: Theory, Algorithm, and Software (Wiley-Interscience, 1998).

S. J. Lee, “Optical methods in flow measurement,” in Handbook of Optical Metrology: Principles and Applications, T.Yoshizawa, ed. (CRC Press, 2008).

G. E. Nilsson, E. G. Salerud, N. O. T. Strömberg, and K. Wårdell, “Laser Doppler perfusion monitoring and imaging,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

D. A. Zimnyakov and V. V. Tuchin, “Speckle correlometry,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
[CrossRef]

D. N. Ku, “Blood flow in arteries,” Annu. Rev. Fluid Mech. 29, 399–434(1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relationship between the carrier frequency and the measurable velocity range.

Fig. 2
Fig. 2

Relative error on frequency (ideal) as a function of number of points per period. The plot starts at N = 3 because the frequency error for N = 2 would be infinite.

Fig. 3
Fig. 3

Relative phase resolution as a function of the velocity ratio: n 0 = 1 , n ¯ = 1.33 (water), and θ D = 0 or π.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Laminar flow profiles within a cylindrical tube with light impinging from the right-hand side. (a) One raw A line superimposed with a theoretical parabola assuming a zero velocity at the tube walls and a maximum velocity in the center. The maximum speed was estimated by measuring the flow rate at the exit of the fluidic system. (b) Same theoretical profile with an averaged A line obtained with 20 raw A lines. (c) Two-dimensional image of the tube with a color-encoded velocity map.

Fig. 6
Fig. 6

Comparison of average velocities deduced from the measured flow rates and from the OCT Doppler profiles. The points in the middle were obtained with flows induced by gravity or by pumps and the four end points (at approximately ± 2.2 and 2.35 m / s ) were obtained by using a syringe to inject the liquid into the tube.

Fig. 7
Fig. 7

Measured turbulent flow profile within a cylindrical tube.

Fig. 8
Fig. 8

Real-time turbulent velocity profiles: (a) raw data, (b) data processed with a 3 × 3 median filter, (c) data processed with a 5 × 5 median filter.

Fig. 9
Fig. 9

Real-time three-dimensional maps of velocity profiles corresponding to the images in Fig. 8: (a) raw data and (b) after 3 × 3 median filtering.

Fig. 10
Fig. 10

One-dimensional velocity profiles taken in the center of the images of Fig. 8 along (a)–(c) horizontal and (d)–(f) vertical lines. Plots (a) and (d) correspond to Fig. 8a; plots (b) and (e) correspond to Fig. 8b; plots (c) and (f) correspond to Fig. 8c.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

t 0 , 1 = t 1 + 1 f S · ( 1 y 2 y 1 ) .
f OCT 1 2 τ .
f D = ( f C f OCT ) = 2 n ¯ v D cos ( θ D ) λ 0 ,
v D = λ 0 ( f C f OCT ) 2 n ¯ cos ( θ D ) .
A sin ( 2 π f OCT t + φ ) ,
Δ t 0 , 1 = p 2 f S | y 1 y 2 | .
| y 1 y 2 | | A | | sin ( 2 π f OCT f S ) | .
Δ t 0 , 1 = Γ 2 f S | sin ( 2 π N ) | .
f OCT = 1 t 0 , 2 t 0 , 1 ,
Δ f OCT f OCT = Γ 2 N | sin ( 2 π N ) | = Γ π | sinc ( 2 π N ) | .
t L = L v C .
N OCT = f OCT × t L = 2 λ 0 [ n 0 v C ± n ¯ v D cos ( θ D ) ] L v C ,
Δ x = L 2 N OCT = λ 0 4 [ n 0 ± n ¯ v D v C cos ( θ D ) ] 1 ,
Δ ξ = Δ x λ 0 = 1 4 [ n 0 ± n ¯ v D v C cos ( θ D ) ] .
δ V lim = λ 0 4 τ n ¯ cos ( θ D )

Metrics