Abstract

We studied photoacoustic waves using pulsed digital holography. The acoustic waves were generated in a reindeer blood target by absorption of an IR laser pulse, λ=1064nm and pulse length=12ns. The acoustic pressure waves were then imaged in water using a second collimated laser pulse at λ=532nm 2μs after the first IR pulse. Quantitative information on acoustic wave properties such as three-dimensional shape and pressure distribution was calculated by applying the inverse Radon transform on the recorded projection. The pressure pulse had a flat and sharp front parallel with the blood surface, which indicates that the pressure was generated at the blood surface. The generated pressure was proportional to the laser fluence with the proportionality constant equal to 1.8±0.3cm1. According to existing data, the proportionality constant should be 1.4cm1 for oxygenated human blood, which made our calculations probable.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Lüscher, Photoacoustic Effect: Principles and Applications (Viewg and Sohn, 1984).
  2. O. R. Esenaliev, V. I. Larina, V. K. Larin, J. D. Deyo, M. Motamedi, and S. D. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 41, 4722–4731 (2002).
    [CrossRef] [PubMed]
  3. R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
    [CrossRef] [PubMed]
  4. Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
    [CrossRef] [PubMed]
  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [CrossRef] [PubMed]
  6. T. Khokhlova, I. Pelivanov, V. Kozhushko, A. Zharinov, V. Solomatin, and A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46, 262–272 (2007).
    [CrossRef] [PubMed]
  7. T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
    [CrossRef]
  8. R. Mattsson, “Bending and acoustic waves in a water-filled box studied by pulsed TV holography and LDV,” Opt. Lasers Eng. 44, 1146–1157 (2006).
    [CrossRef]
  9. E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
    [CrossRef]
  10. E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
    [CrossRef]
  11. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).
  12. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  13. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  14. H. Eisenberg, “Equation for the refractive index of water,” J. Chem. Phys. 43, 3887–3892 (1965).
    [CrossRef]
  15. American Institute of Physics Handbook (McGraw-Hill, 1972).
  16. B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
    [CrossRef]
  17. A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
    [CrossRef]

2009 (3)

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
[CrossRef]

2008 (1)

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

R. Mattsson, “Bending and acoustic waves in a water-filled box studied by pulsed TV holography and LDV,” Opt. Lasers Eng. 44, 1146–1157 (2006).
[CrossRef]

2005 (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

2004 (1)

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

2002 (1)

1996 (1)

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

1982 (1)

1965 (1)

H. Eisenberg, “Equation for the refractive index of water,” J. Chem. Phys. 43, 3887–3892 (1965).
[CrossRef]

Amer, E.

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
[CrossRef]

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Beard, P. C.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
[CrossRef]

Carlsson, T. E.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

Cox, B. T.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
[CrossRef]

de Mul, F.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Deyo, J. D.

Eisenberg, H.

H. Eisenberg, “Equation for the refractive index of water,” J. Chem. Phys. 43, 3887–3892 (1965).
[CrossRef]

Elfsberg, M.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

Esenaliev, O. R.

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Goldbach, T.

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Gren, P.

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
[CrossRef]

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Hondebrink, E.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Hopman, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Ina, H.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Kaplan, A.

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

Karabutov, A.

Karabutov, A. A.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

Khokhlova, T.

Klaessens, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Kobayashi, S.

Kolkman, R.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Kozhushko, V.

Lao, Y.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

Larin, V. K.

Larina, V. I.

Laufer, J. G.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
[CrossRef]

Lüscher, E.

E. Lüscher, Photoacoustic Effect: Principles and Applications (Viewg and Sohn, 1984).

Mattsson, R.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

R. Mattsson, “Bending and acoustic waves in a water-filled box studied by pulsed TV holography and LDV,” Opt. Lasers Eng. 44, 1146–1157 (2006).
[CrossRef]

Motamedi, M.

Pelivanov, I.

Prough, S. D.

Schwarzmaier, H.

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Sjödahl, M.

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
[CrossRef]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Solomatin, V.

Steenbergen, W.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Takeda, M.

Tegner, J.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

Thijssen, J.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

van Leeuwen, T.

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Xiang, L.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

Xing, D.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

Yang, S.

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

Yaroslasvsky, A.

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Yaroslasvsky, I.

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Zharinov, A.

Appl. Opt. (2)

Appl. Surf. Sci. (1)

E. Amer, P. Gren, A. Kaplan, and M. Sjödahl, “Impact of an extended source in laser ablation using pulsed digital holographic interferometry and modelling,” Appl. Surf. Sci. 255, 8917–8925 (2009).
[CrossRef]

J. Chem. Phys. (1)

H. Eisenberg, “Equation for the refractive index of water,” J. Chem. Phys. 43, 3887–3892 (1965).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lasers Eng. (3)

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44, 535–554 (2006).
[CrossRef]

R. Mattsson, “Bending and acoustic waves in a water-filled box studied by pulsed TV holography and LDV,” Opt. Lasers Eng. 44, 1146–1157 (2006).
[CrossRef]

E. Amer, P. Gren, and M. Sjödahl, “Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry,” Opt. Lasers Eng. 47, 793–799 (2009).
[CrossRef]

Phys. Med. Biol. (3)

R. Kolkman, J. Klaessens, E. Hondebrink, J. Hopman, F. de Mul, W. Steenbergen, J. Thijssen, and T. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Y. Lao, D. Xing, S. Yang, and L. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol. 53, 4203–4212 (2008).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009)..
[CrossRef]

A. Yaroslasvsky, I. Yaroslasvsky, T. Goldbach, and H. Schwarzmaier, “The optical properties of blood in the near infrared spectral range,” Proc. SPIE 2678, 314–324 (1996).
[CrossRef]

Other (4)

American Institute of Physics Handbook (McGraw-Hill, 1972).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics(American Institute of Physics, 1993).

E. Lüscher, Photoacoustic Effect: Principles and Applications (Viewg and Sohn, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: D, diffuser; M, mirror; L, lens; G, glass plate; EM, energy monitor; and BS, beam splitter. The 1064 nm pulse was used to generate a PA pressure wave, which was imaged by a second frequency doubled pulse, λ = 532 nm , from the same laser system. The EM was first calibrated by measuring the energy at the positions E 0 E 4 .

Fig. 2
Fig. 2

Measured phase difference due to the pressure wave. The laser pulse energies are 5.8, 21.0, and 34.7 mJ , and the corresponding laser fluences are 290, 1040, and 1730 mJ / cm 2 for (a), (b), and (c), respectively. The difference between r y and r z in (c) gives the radius of the acoustic source and was from this figure estimated to be 0.8 mm .

Fig. 3
Fig. 3

Illustration of the pressure generation.

Fig. 4
Fig. 4

Raw and filtered phase data.

Fig. 5
Fig. 5

Reconstructed pressure change in the x y plane: (a) z = 1 mm using the dashed line in Fig. 4. (b) The profile along x at y = 0 mm . From the data plotted in (b) the maximum pressure and the distance r between the peak and the z axis is extracted.

Fig. 6
Fig. 6

(a) Maximum pressure change in reconstructed x y planes for different z. (b) Distance between the peak and the z axis is plotted versus z, which gives the shape of the pressure front. Both plots are for the pressure wave in Fig. 2c.

Fig. 7
Fig. 7

Generated pressure plotted versus the laser pulse energy. The error bars are calculated from the estimation that the phase is measured with an accuracy of π / 10 rad .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P = Γ μ a H ,
Δ φ = 2 π λ 0 l [ n ( x , y , z ) n 0 ( x , y , z ) ] d l ,
Δ φ = Δ n 2 π λ d x ,
n 2 1 n 2 + 2 = 0.2047 ρ 0.88768
Γ μ a = S A m A g ,

Metrics