Abstract

We report a method for fast identification of trace substances. It is based on the single-photon detection of characteristic Raman scatterings by using a gated dual-wavelength coincidence technique and multipixel photon counters. The objective of this study is to overcome the drawback of the low-speed detection of trace substances by Raman spectroscopy and other ultraweak spectra. Analysis indicates that a trace substance in the single-molecule level can be identified within 1 ms. As an example, a fast measurement of a CCl4 concentration with a high intrinsic peak-to-background ratio was demonstrated using this method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
    [CrossRef] [PubMed]
  2. G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
    [CrossRef]
  3. C. J. H. Brenan and I. W. Hunter, “Chemical imaging with a confocal scanning Fourier-transform-Raman microscope,” Appl. Opt. 33, 7520–7528 (1994).
    [CrossRef] [PubMed]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  5. M. Fryling, C. J. Franck, and R. L. McCreery, “Intensity calibration and sensitivity comparisons for CCD/Raman spectrometers,” Appl. Spectrosc. 47, 1965–1974 (1993).
    [CrossRef]
  6. Princeton Instruments catalog (Princeton Instruments, 2008), http://www.princetoninstruments.com/imaging/.
  7. A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
    [CrossRef] [PubMed]
  8. G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
    [CrossRef]
  9. N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments (Stanford University, 2006), pp. 1–9.
    [PubMed]
  10. Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
    [CrossRef]
  11. I. Britvitch and D. Renker, “Measurements of the recovery time of Geiger-mode avalanche photodiodes,” Nucl. Instrum. Methods A 567, 260–263 (2006).
    [CrossRef]
  12. W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).
  13. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multi-photon detection,” Opt. Express 15, 14539–14549 (2007).
    [CrossRef] [PubMed]
  14. B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
    [CrossRef] [PubMed]

2009

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

2008

Princeton Instruments catalog (Princeton Instruments, 2008), http://www.princetoninstruments.com/imaging/.

2007

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multi-photon detection,” Opt. Express 15, 14539–14549 (2007).
[CrossRef] [PubMed]

2006

I. Britvitch and D. Renker, “Measurements of the recovery time of Geiger-mode avalanche photodiodes,” Nucl. Instrum. Methods A 567, 260–263 (2006).
[CrossRef]

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments (Stanford University, 2006), pp. 1–9.
[PubMed]

2004

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

2003

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

1994

1993

Banerjee, S.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Borodin, A.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Brenan, C. J. H.

Britvitch, I.

I. Britvitch and D. Renker, “Measurements of the recovery time of Geiger-mode avalanche photodiodes,” Nucl. Instrum. Methods A 567, 260–263 (2006).
[CrossRef]

Dhulla, V.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Eraerds, P.

Fini, G.

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

Fleger, Y.

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

Franck, C. J.

Fryling, M.

Gaft, M.

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

Gavrilov, D.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Gisin, N.

Gorbovitski, B.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Gorbovitski, M.

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

Gorfinkel, V.

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Gudkov, G.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Haque, S.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Hench, L. L.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Hunter, I. W.

Kabotyanski, E. A.

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

Lee, S. J.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Legré, M.

Lin, Z.-X.

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

Liu, W.-H.

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

McCreery, R.

Meinhart, C. D.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Moskvits, M.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Nagli, L.

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Notingher, I.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Otte, N.

N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments (Stanford University, 2006), pp. 1–9.
[PubMed]

Piorek, B. D.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Polak, J. M.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Renker, D.

I. Britvitch and D. Renker, “Measurements of the recovery time of Geiger-mode avalanche photodiodes,” Nucl. Instrum. Methods A 567, 260–263 (2006).
[CrossRef]

Rochas, A.

Rosenbluh, M.

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

Santiago, J. G.

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Stepukhovitch, A.

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Tsupryk, A.

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

Verrier, S.

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Wu, X.-Q.

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

Yang, W.

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

Zbinden, H.

Appl. Opt.

Appl. Spectrosc.

Biopolymers

I. Notingher, S. Verrier, S. Haque, J. M. Polak, and L. L. Hench, “Spectroscopic study of human lung epithelial cells in culture: living cells versus dead cells,” Biopolymers 72, 230–240(2003).
[CrossRef] [PubMed]

Chinese J. Anal. Chem.

W.-H. Liu, W. Yang, X.-Q. Wu, and Z.-X. Lin, “Direct determination of ethanol by laser Raman spectra with internal standard method,” Chinese J. Anal. Chem. 35, 416–418 (2007).

Electrophoresis

A. Tsupryk, M. Gorbovitski, E. A. Kabotyanski, and V. Gorfinkel, “Novel design of multicapillary arrays for high-throughput DNA sequencing,” Electrophoresis 27, 2869–2879(2006).
[CrossRef] [PubMed]

J. Lumin.

Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, “Narrow gated Raman and luminescence of explosives,” J. Lumin. 129, 979–983 (2009).
[CrossRef]

J. Raman Spectrosc.

G. Fini, “Applications of Raman spectroscopy to pharmacy,” J. Raman Spectrosc. 35, 335–337 (2004).
[CrossRef]

Nucl. Instrum. Methods A

I. Britvitch and D. Renker, “Measurements of the recovery time of Geiger-mode avalanche photodiodes,” Nucl. Instrum. Methods A 567, 260–263 (2006).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci. USA

B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskvits, S. Banerjee, and C. D. Meinhart, “Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules,” Proc. Natl. Acad. Sci. USA 104, 18898–18901 (2007).
[CrossRef] [PubMed]

Proc. SPIE

G. Gudkov, V. Dhulla, A. Borodin, D. Gavrilov, A. Stepukhovitch, B. Gorbovitski, and V. Gorfinkel, “32-channel single photon counting module for ultrasensitive detection of DNA sequences,” Proc. SPIE 6372, 63720C (2006).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Other

Princeton Instruments catalog (Princeton Instruments, 2008), http://www.princetoninstruments.com/imaging/.

N. Otte, “The silicon photomultiplier—a new device for high energy physics, astroparticle physics, industrial and medical applications,” in Proceedings of the IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments (Stanford University, 2006), pp. 1–9.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the setup for the single-photon detection of characteristic Raman scatterings with the gated dual-wavelength coincidence technique of this study: BS, beam splitter ( R / T ratio 1 : 1 ); NSec Delay, nanosecond delay; CFD, constant fraction discriminator; APD, avalanche photon diode; M, monochromator; sample, CCl 4 in glass container.

Fig. 2
Fig. 2

Coincidence count rate versus Raman shift at different thresholds. The long-dashed curve, solid curve, and short-dashed curve correspond to 0.5 p.e., 1.5 p.e., and 2.5 p.e. of CFD, respectively.

Fig. 3
Fig. 3

Coincidence count rate versus Raman shift at different Raman peak curves. The solid curve, short-dashed curve, and long-dashed curve represent the Raman spectra, with the emergent wavelength of one monochromator held fixed at the three Raman peak lines separately, while the other monochromator scanned. The maximum PBR was about 205 : 1 .

Fig. 4
Fig. 4

Dependence of PBR on percentage concentration of CCl 4 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PBR = R R / R BG = R R / ( R stray + R flu + R MPPC ) ,
P ( k ) = μ k · exp ( μ ) / k ! ( k = 0 , 1 , 2 , · · · , n ) ,
P = 1 ( 1 + μ ) exp ( μ ) .
P coin = [ 1 ( 1 + μ 1 ) exp ( μ 1 ) ] [ 1 ( 1 + μ 2 ) exp ( μ 2 ) ] ,
R R = f × [ 1 ( 1 + μ 1 ) exp ( μ 1 ) ] [ 1 ( 1 + μ 2 ) exp ( μ 2 ) ] ,
P d = R CFD · Δ t CFD / 1 s ,
P o = P d 2 .
R MPPC = R CFD · P o · f · Δ t G / 1 s ,

Metrics