Abstract

For additional use in industry and biomedicine, water-soluble Cu2+-doped ZnS quantum dots (QDs) (ZnS:Cu) were synthesized with thioglycolic acid (TGA) as the stabilizer in aqueous solutions in air. The products were characterized by x-ray diffraction, ultraviolet–visible spectroscopy, transmission electron microscopy, and photoluminescence. The effect of Cu2+ doping concentration and TGA/(Zn+Cu) molar ratio on crystal structures and the luminescent intensity of ZnS:Cu QDs have been investigated. As a result, The as-prepared ZnS:Cu QDs had diameters of 1012nm and a sphere monodisperse form that consists of ZnS:Cu nanoparticles of approximately 2nm. The optimum Cu2+ doping concentration and TGA/(Zn+Cu) molar ratio were obtained when the photoluminescent emission showed a maximum value.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
    [CrossRef] [PubMed]
  2. R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
    [CrossRef]
  3. A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
    [CrossRef] [PubMed]
  4. M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
    [CrossRef] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
    [CrossRef] [PubMed]
  6. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
    [CrossRef]
  7. N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
    [CrossRef] [PubMed]
  8. S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
    [CrossRef]
  9. C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
    [CrossRef]
  10. J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
    [CrossRef]
  11. N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
    [CrossRef] [PubMed]
  12. N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
    [CrossRef] [PubMed]
  13. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
    [CrossRef] [PubMed]
  14. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
    [CrossRef]
  15. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
    [CrossRef] [PubMed]
  16. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
    [CrossRef] [PubMed]
  17. B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
    [CrossRef]
  18. W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
    [CrossRef]
  19. A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
    [CrossRef]
  20. H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
    [CrossRef]
  21. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
    [CrossRef]
  22. D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
    [CrossRef] [PubMed]
  23. Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008).
    [CrossRef]
  24. H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006).
    [CrossRef]
  25. H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).
  26. J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
    [CrossRef]
  27. E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
    [CrossRef]
  28. M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
    [CrossRef]

2009

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
[CrossRef]

2008

A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
[CrossRef]

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008).
[CrossRef]

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

2007

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

2006

A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
[CrossRef] [PubMed]

H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006).
[CrossRef]

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

2005

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

2004

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
[CrossRef]

R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
[CrossRef]

2003

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

2002

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

2001

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

2000

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

1998

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

1997

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

1996

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

1954

H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).

Achermann, M.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

Albrecht, W.

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

Alexander, L. F.

H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).

Alivisatos, A. P.

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

Anderson, G. P.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Andrade, J. J.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Andres, O.

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

Bailey, R. E.

R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
[CrossRef]

Battaglia, D. M.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

Bawendi, M. G.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Bhatia, S. N.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
[CrossRef]

Brasil, A. G.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Bruchez, M. J.

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Chan, W. C. W.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
[CrossRef]

Chaudhuri, S.

A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
[CrossRef]

Chen, C. C.

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

Chen, T. M.

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

Cong, G. W.

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

Crooker, S. A.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

Datta, A.

A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
[CrossRef]

Derfus, A. M.

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
[CrossRef]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Empedocles, S. A.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

Eychmüller, A.

A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
[CrossRef] [PubMed]

Farias, P. M. A.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Fontes, A.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Fu, X.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Gao, Z.

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Gaponik, N.

A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
[CrossRef] [PubMed]

Geng, B.

B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
[CrossRef]

Gin, P.

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Goldman, E. R.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Goorskey, D.

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

Guo, W.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Haase, M.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Herhold, A. B.

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

Hu, H.

H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006).
[CrossRef]

Huang, C. P.

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

Johnson, C. S.

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

Johnson, M. B.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Kagan, C. R.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

Keay, J. C.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Kelly, J. J.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

Klimov, V. I.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

Klong, H. P.

H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).

Kornowski, A.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Li, H.

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Li, Y. K.

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

Liao, C.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Liu, S. W.

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

Liu, Y.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

Ma, J.

B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
[CrossRef]

Mattoussi, H.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Mauro, J. M.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Meijerink, A.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Mikulec, F. V.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Miroslaw, B.

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

Mishima, T. D.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Moronne, M.

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Murray, C. B.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

Narayanan, S. S.

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

Nie, S.

R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
[CrossRef]

Nirmal, M.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

Norris, D. J.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

Oliver, E.

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

Pal, S. K.

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

Panda, S. K.

A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
[CrossRef]

Peng, W. Q.

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

Peng, X.

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Petruska, M. A.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Pradhan, N.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

Qu, S. C.

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

Rogach, A. L.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Santos, B. S.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Shavel, A.

A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
[CrossRef] [PubMed]

Shevchenko, E. V.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Sinha, S. S.

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

Smith, A. M.

R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
[CrossRef]

Sun, L.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Sunder, V. C.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

Suyver, J. F.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

Talapin, D. V.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Thessing, J.

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

Thomas, N.

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Verma, P. K.

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

Wang, M.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Wang, X.

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Wang, Y. A.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

Wang, Z. G.

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

Weller, H.

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Wuister, S. F.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

Xiao, C.

Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008).
[CrossRef]

Xiao, Q.

Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008).
[CrossRef]

Yan, C.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Zhan, F.

B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
[CrossRef]

Zhang, W.

H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006).
[CrossRef]

Zhang, Y.

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Appl. Surf. Sci.

Q. Xiao and C. Xiao, “Synthesis and photoluminescence of water-soluble Mn2+-doped ZnS quantum dots,” Appl. Surf. Sci. 254, 6432–6435 (2008).
[CrossRef]

Chem. Phys. Lett.

S. S. Narayanan, S. S. Sinha, P. K. Verma, and S. K. Pal, “Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA,” Chem. Phys. Lett. 463, 160–165 (2008).
[CrossRef]

J. Am. Chem. Soc.

N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, “An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals,” J. Am. Chem. Soc. 127, 17586–17587 (2005).
[CrossRef] [PubMed]

N. Pradhan and X. Peng, “Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry,” J. Am. Chem. Soc. 129, 3339–3347 (2007).
[CrossRef] [PubMed]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125, 12567–12575 (2003).
[CrossRef] [PubMed]

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sunder, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein,” J. Am. Chem. Soc. 122, 12142–12150(2000).
[CrossRef]

D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, “Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency,” J. Am. Chem. Soc. 124, 5782–5790 (2002).
[CrossRef] [PubMed]

J. Phys. Chem. B

E. Oliver, O. Andres, B. Miroslaw, W. Albrecht, and N. Thomas, “Synthesis and spectroscopic investigations of Cu-and Pb-doped colloidal ZnS nanocrystals,” J. Phys. Chem. B 110, 23175–23178 (2006).
[CrossRef]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies,” J. Phys. Chem. B 107, 13782–13787(2003).
[CrossRef]

A. Shavel, N. Gaponik, and A. Eychmüller, “Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment,” J. Phys. Chem. B 110, 19280–19284 (2006).
[CrossRef] [PubMed]

J. Solid State Chem.

A. Datta, S. K. Panda, and S. Chaudhuri, “Phase transformation and optical properties of Cu-doped ZnS nanorods,” J. Solid State Chem. 181, 2332–2337 (2008).
[CrossRef]

Mater. Chem. Phys.

B. Geng, J. Ma, and F. Zhan, “A solution phase thermal decomposition molecule precursors route to ZnS:Cu2+ nanorods and their optical properties,” Mater. Chem. Phys. 113, 534–538(2009).
[CrossRef]

Microchim. Acta

H. Li, Y. Zhang, X. Wang, and Z. Gao, “A luminescent nanosensor for Hg(II) based on functionalized CdSe/ZnS quantum dots,” Microchim. Acta 160, 119–123 (2008).
[CrossRef]

Microelectron. J.

J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, “Synthesis and characterization of blue emitting ZnSe quantum dots,” Microelectron. J. 40, 641–643 (2009).
[CrossRef]

Nano. Lett.

N. Pradhan, D. M. Battaglia, Y. Liu, and X. Peng, “Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels,” Nano. Lett. 7, 312–317 (2007).
[CrossRef] [PubMed]

A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano. Lett. 4, 11–18 (2004).
[CrossRef]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+,” Nano. Lett. 1, 429–433 (2001).
[CrossRef]

Opt. Mater.

H. Hu and W. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater. 28, 536–550 (2006).
[CrossRef]

W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
[CrossRef]

Phys. Rev. Lett.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, “Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots,” Phys. Rev. Lett. 77, 3873–3876 (1996).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).
[CrossRef] [PubMed]

Physica E (Amsterdam)

R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Physica E (Amsterdam) 25, 1–12 (2004).
[CrossRef]

Science

C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, “Size dependence of structural metastability in semiconductor nanocrystals,” Science 276, 398–401 (1997).
[CrossRef] [PubMed]

M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281, 2013–2016 (1998).
[CrossRef] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307, 538–544 (2005).
[CrossRef] [PubMed]

Sens. Actuators B

C. P. Huang, S. W. Liu, T. M. Chen, and Y. K. Li, “A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots,” Sens. Actuators B 130, 338–342 (2008).
[CrossRef]

Solid State Commun.

M. Wang, L. Sun, X. Fu, C. Liao, and C. Yan, “Synthesis and optical properties of ZnS:Cu(II) nanoparticles,” Solid State Commun. 115, 493–496 (2000).
[CrossRef]

Other

H. P. Klong and L. F. Alexander, X-Ray Diffraction Procedures for Crystalline and Amorphous Materials (Wiley, 1954).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Synthesis route of water-soluble Zn S : Cu QDs with TGA.

Fig. 2
Fig. 2

XRD patterns of prepared samples: (a) pure ZnS, (b) 1.0% Cu-doped ZnS with TGA / ( Zn + Cu ) was 1, (c) 2.0% Cu-doped ZnS with TGA / ( Zn + Cu ) was 1, and (d) 1.0% Cu-doped ZnS with TGA / ( Zn + Cu ) was 2.

Fig. 3
Fig. 3

UV–visible absorption spectra of Zn S : Cu QDs with different Cu 2 + concentration: (a) undoped, (b) 1.0%, and (c) 2.0%.

Fig. 4
Fig. 4

(a), (b) TEM images of Zn S : Cu (1%) with different resolutions and (c) the corresponding EDX.

Fig. 5
Fig. 5

Photoluminescent spectra of Zn S : Cu QDs with different Cu 2 + concentrations.

Fig. 6
Fig. 6

Photoluminescent spectra of Zn S : Cu QDs with 1.0% Cu 2 + prepared under different TGA / ( Zn + Cu ) molar ratios: (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, and (e) 2.5.

Fig. 7
Fig. 7

Peak intensity ratio of Cu 2 + emission to defect-state emission ( I 2 / I 1 ) for 1.0% Cu 2 + doped ZnS QDs as a function of TGA / ( Zn + Cu ) molar ratio.

Metrics