Abstract

We fabricated several microstructures, such as buried gratings, surface gratings, surface microcraters, and microchannels, in bulk poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) using the femtosecond (fs) direct writing technique. A methodical study of the diffraction efficiency (DE) of the achieved gratings was performed as a function of scanning speed, energy, and focal spot size in both PMMA and PDMS. An optimized set of writing parameters has been identified for achieving efficient gratings in both cases. The highest DE recorded in a PDMS grating was ∼10% and ∼34% in a PMMA grating obtained with an 0.65 NA (40X) objective with a single scan. Spectroscopic techniques, including Raman, UV-visible, electron spin resonance (ESR), and physical techniques, such as laser confocal and scanning electron microscopy (SEM), were employed to examine the fs laser-modified regions in an attempt to understand the mechanism responsible for physical changes at the focal volume. Raman spectra collected from the modified regions of PMMA indicated bond softening or stress-related mechanisms responsible for structural changes. We have also observed emission from the fs-modified regions of PMMA and PDMS. An ESR spectrum, recorded a few days after irradiation, from the fs laser-modified regions in PMMA did not reveal any signature of free radicals. However, fs-modified PDMS regions exhibited a single peak in the ESR signal. The probable rationale for the behavior of the ESR spectra in PMMA and PDMS are discussed in the light of free radical formation after fs irradiation. Microchannels within the bulk and surface of PMMA were achieved as well. Microcraters on the surfaces of PMMA and PDMS were also accomplished, and the variation of structure properties with diverse writing conditions has been studied.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008).
    [CrossRef]
  2. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
    [CrossRef]
  3. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
    [CrossRef]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008).
    [CrossRef]
  5. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
    [CrossRef]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  7. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
    [CrossRef]
  8. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
    [CrossRef]
  9. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
    [CrossRef]
  10. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025(1996).
    [CrossRef]
  12. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [CrossRef]
  13. Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
    [CrossRef]
  14. H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
    [CrossRef]
  15. D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
    [CrossRef]
  16. P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003).
    [CrossRef]
  17. C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
    [CrossRef]
  18. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190–192 (2007).
    [CrossRef]
  19. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
    [CrossRef]
  20. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
    [CrossRef]
  21. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
    [CrossRef]
  22. S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
    [CrossRef]
  23. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
    [CrossRef]
  24. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840–1842 (2004).
    [CrossRef]
  25. K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
    [CrossRef]
  26. K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
    [CrossRef]
  27. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200–206 (2008).
    [CrossRef]
  28. G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240–2242 (2004).
    [CrossRef]
  29. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
    [CrossRef]
  30. D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
    [CrossRef]
  31. M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
    [CrossRef]
  32. Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
    [CrossRef]
  33. D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
    [CrossRef]
  34. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [CrossRef]
  35. S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).
  36. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
    [CrossRef]
  37. J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004).
    [CrossRef]
  38. W. Watanabe, “Femtosecond filamentary modifications in bulk polymer materials,” Laser Phys. 19, 342–345 (2009).
    [CrossRef]
  39. H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
    [CrossRef]
  40. H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
    [CrossRef]
  41. S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).
  42. N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
    [CrossRef]
  43. M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
    [CrossRef]
  44. L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
    [CrossRef]
  45. N. Bityurin, “Studies on laser ablation of polymers,” Annu. Rep. Prog. Chem. Sect. C 101, 216–247 (2005).
    [CrossRef]
  46. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
    [CrossRef]
  47. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27, 107–111 (2010).
    [CrossRef]
  48. C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part I),” Anal. Bioanal. Chem. 385, 1351–1361(2006).
    [CrossRef]
  49. C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part II),” Anal. Bioanal. Chem. 385, 1362–1369 (2006).
    [CrossRef]
  50. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
    [CrossRef]
  51. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
    [CrossRef]
  52. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914–21921 (2008).
    [CrossRef]
  53. L. Ding, R. I. Blackwell, J. F. Kunzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100–3108 (2008).
    [CrossRef]
  54. J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
    [CrossRef]
  55. J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
    [CrossRef]
  56. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
    [CrossRef]
  57. S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
    [CrossRef]
  58. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
    [CrossRef]
  59. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
    [CrossRef]
  60. A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
    [CrossRef]
  61. T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y-II. Park, “Formation of superhydrophobic poly(dimethylsiloxane) by ultrafast laser-induced surface modification,” Opt. Express 16, 12715–12725 (2008).
    [CrossRef]
  62. D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
    [CrossRef]
  63. S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
    [CrossRef]
  64. S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
    [CrossRef]
  65. K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
    [CrossRef]
  66. K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
    [CrossRef]
  67. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [CrossRef]
  68. A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962).
    [CrossRef]
  69. H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997).
    [CrossRef]
  70. H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997).
    [CrossRef]
  71. F. Szocs, “Free radicals in x-ray irradiated poly (methylmethacrylate) from the point of view of ESR dosimetry,” Chem. Papers 53, 137–139 (1999).
  72. M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).
  73. R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
    [CrossRef]

2010 (2)

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate),” J. Opt. Soc. Am. B 27, 107–111 (2010).
[CrossRef]

2009 (11)

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

W. Watanabe, “Femtosecond filamentary modifications in bulk polymer materials,” Laser Phys. 19, 342–345 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

2008 (15)

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[CrossRef]

H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008).
[CrossRef]

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200–206 (2008).
[CrossRef]

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[CrossRef]

L. Ding, R. I. Blackwell, J. F. Kunzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100–3108 (2008).
[CrossRef]

T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y-II. Park, “Formation of superhydrophobic poly(dimethylsiloxane) by ultrafast laser-induced surface modification,” Opt. Express 16, 12715–12725 (2008).
[CrossRef]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16, 21914–21921 (2008).
[CrossRef]

2007 (5)

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
[CrossRef]

K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
[CrossRef]

A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190–192 (2007).
[CrossRef]

2006 (5)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part I),” Anal. Bioanal. Chem. 385, 1351–1361(2006).
[CrossRef]

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part II),” Anal. Bioanal. Chem. 385, 1362–1369 (2006).
[CrossRef]

2005 (8)

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

N. Bityurin, “Studies on laser ablation of polymers,” Annu. Rep. Prog. Chem. Sect. C 101, 216–247 (2005).
[CrossRef]

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
[CrossRef]

2004 (5)

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004).
[CrossRef]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840–1842 (2004).
[CrossRef]

G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240–2242 (2004).
[CrossRef]

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

2003 (5)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003).
[CrossRef]

2002 (7)

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

2001 (2)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

1999 (3)

F. Szocs, “Free radicals in x-ray irradiated poly (methylmethacrylate) from the point of view of ESR dosimetry,” Chem. Papers 53, 137–139 (1999).

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

1997 (2)

H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997).
[CrossRef]

H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997).
[CrossRef]

1996 (1)

1962 (1)

A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Ashcom, J. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Baldacchini, T.

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Basanta, M.

Baudach, S.

S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).

Baum, A.

Becker, H.

H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008).
[CrossRef]

Bennion, I.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Bhaktha, S. N. B.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Bityurin, N.

N. Bityurin, “Studies on laser ablation of polymers,” Annu. Rep. Prog. Chem. Sect. C 101, 216–247 (2005).
[CrossRef]

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

Blackwell, R. I.

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Bruzewicz, D. A.

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Büttgenbach, S.

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

Cai, J.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Callan, J. P.

Campbell, K.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Carrington, A.

A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962).
[CrossRef]

Cerami, L. R.

Chalker, P. R.

Chang, W.-S.

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

Cheng, Y.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Chiappini, A.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Chiasera, A.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Cho, S.-H.

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

Choi, H. W.

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

Chong, T. C.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

Chung, S.

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Conforti, P. F.

M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
[CrossRef]

Courrol, L. C.

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Davis, L. M.

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

Day, D.

de Freitas, A. Z.

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Demming, S.

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

Ding, L.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Dubov, M.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Duliua, O. G.

M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Everett, T. A.

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

Ezoe, R.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Farson, D. F.

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

Ferrari, M.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

Fielden, P. R.

Finlay, R. J.

Forman, S. M.

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

Foulds, I. G.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Garrison, B. J.

M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
[CrossRef]

Gärtner, C.

H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008).
[CrossRef]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008).
[CrossRef]

Glezer, E. N.

Goddard, N. J.

Goenaga, I.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

Gómez, D.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

Groisman, A.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Gu, M.

Guo, Z.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Guven, O.

H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997).
[CrossRef]

Haiducu, M.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Han, J.

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Her, T. H.

Higgins, D. A.

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[CrossRef]

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

Hirono, S.

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Hofmeister, W.

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

Hong, J. W.

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

Hong, M. H.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

Horiike, M.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

Hua, B.

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Huang, H.

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

Huang, L.

Huang, W.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Hwang, J. C.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Issac, R.

Ito, T.

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

Itoh, K.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Jani, D.

Jaroszynski, D. A.

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[CrossRef]

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003).
[CrossRef]

Jeoung, S. C.

Jiang, B.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Jiu, H.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Johnstone, R. W.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Jones, D.

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[CrossRef]

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003).
[CrossRef]

Junior, N. D. V.

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Kamata, M.

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

Kamm, R. D.

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Kanehira, S.

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Kaptan, H. Y.

H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997).
[CrossRef]

H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997).
[CrossRef]

Kasuya, M.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Katayama, S.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

Kautek, W.

J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004).
[CrossRef]

S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).

Khan Malek, C. G.

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part I),” Anal. Bioanal. Chem. 385, 1351–1361(2006).
[CrossRef]

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part II),” Anal. Bioanal. Chem. 385, 1362–1369 (2006).
[CrossRef]

Kim, K.-R.

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

Kim, T. N.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Kim, Y.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Kleinfeld, D.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Klimov, D.

K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
[CrossRef]

Knox, W. H.

Kolber, Z.

K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
[CrossRef]

Kruger, J.

J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004).
[CrossRef]

S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Kumar, R. S. S.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Kunzler, J. F.

Künzler, J. F.

Labenski, G.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Lee, H.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lee, J. H.

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Lee, L. J.

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

Lee, M.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Lee, Y.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Li, X.

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

Lim, K.-S.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Linhardt, J.

Lippert, T.

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Liu, D.

Lizuain, I.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

Llobera, A.

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

Lopez, C.

Lorusso, A.

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

Lu, C.

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

Lucarini, V.

Lugão, A. B.

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Luk’yanchuk, B. S.

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Marcinkevicius, A.

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Matsuda, K.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Mattarelli, M.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008).
[CrossRef]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200–206 (2008).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025(1996).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Mendonca, C. R.

Meng, Z.

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Metev, S.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Meteva, K.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Mezentsev, V. K.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Midorikawa, K.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Milosavljevic, M.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Mochizuki, H.

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Montagna, M.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Moon, M.-W.

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Narayana Rao, D.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

Nassisi, V.

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

Nie, Z.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Nishii, J.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Obara, M.

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

Ohta, K.

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

Osellame, R.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Ozaita, M.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

Ozeki, Y.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

Parameswaran, M.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Park, Y-II.

Parrish, M.

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

Paul, K. E.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Pawar, S.

Perrie, W.

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Picciotto, A.

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

Prasad, M.

M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
[CrossRef]

Preda, N.

M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[CrossRef]

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Qiu, J. R.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

Rahbar, M.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Ramponi, R.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Richardson, K.

Richardson, M.

Righinini, G. C.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rode, A. V.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Rogers, J. A.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

Samad, R. E.

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Sameoto, D.

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

Sawanobori, N.

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

Schaffer, C. B.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Scully, P. J.

Shen, Y. Q.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

Shih, T.

Shin, H. J.

Si, J.

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Si, J. H.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef]

Siegel, A. C.

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

Smith, T.

Sowa, S.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Stein, G.

A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962).
[CrossRef]

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

Straub, M.

Sugioka, K.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Szocs, F.

F. Szocs, “Free radicals in x-ray irradiated poly (methylmethacrylate) from the point of view of ESR dosimetry,” Chem. Papers 53, 137–139 (1999).

Tamaki, T.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Tang, H.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Tatar, L.

H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997).
[CrossRef]

Thomas, C. L. P.

Tikhonchuk, V. T.

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Tilghman, R. W.

Torrisi, L.

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

Tsutsumi, N.

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Turrell, S.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

Valle, G. Della

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Vanner, M. R.

Velter-Stefanescu, M.

M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).

Ventura, M. J.

Venugopal Rao, S.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

Vishnubhatla, K. C.

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

Wang, K.

K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
[CrossRef]

Watanabe, W.

W. Watanabe, “Femtosecond filamentary modifications in bulk polymer materials,” Laser Phys. 19, 342–345 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Weibel, W. B.

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

White, Y. V.

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

Whitesides, G. M.

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Wilke, R.

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

Wochnowski, C.

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

Wolfe, D. B.

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Xia, A.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Xia, Y.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

Xie, A. F.

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

Xing, H.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Yoo, H.

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

Yoon, T. O.

Zhai, J. F.

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

Zhang, Q.

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Zhou, G.

Zoubir, A.

Adv. Mater. (3)

A. C. Siegel, D. A. Bruzewicz, W. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane),” Adv. Mater. 19, 727–733(2007).
[CrossRef]

D. B. Wolfe, J. B. Ashcom, J. C. Hwang, C. B. Schaffer, E. Mazur, and G. M. Whitesides, “Customization of poly(dimethylsiloxane) stamps by micromachining using a femtosecond-pulsed laser,” Adv. Mater. 15, 62–65 (2003).
[CrossRef]

S. Chung, J. H. Lee, M.-W. Moon, J. Han, and R. D. Kamm, “Non-lithographic wrinkle nanochannels for protein preconcentration,” Adv. Mater. 20, 3011–3016 (2008).
[CrossRef]

Adv. Polym. Sci. (1)

J. Kruger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” Adv. Polym. Sci. 168, 247–289 (2004).
[CrossRef]

Anal. Bioanal. Chem. (3)

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part I),” Anal. Bioanal. Chem. 385, 1351–1361(2006).
[CrossRef]

C. G. Khan Malek, “Laser processing for bio-microfluidics applications (part II),” Anal. Bioanal. Chem. 385, 1362–1369 (2006).
[CrossRef]

H. Becker and C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390, 89–111 (2008).
[CrossRef]

Annu. Rep. Prog. Chem. Sect. C (1)

N. Bityurin, “Studies on laser ablation of polymers,” Annu. Rep. Prog. Chem. Sect. C 101, 216–247 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Appl. Phys. Lett. (7)

Z. Nie, H. Lee, H. Yoo, Y. Lee, Y. Kim, K.-S. Lim, and M. Lee, “Multilayered optical bit memory with a high signal-to-noise ratio in fluorescent polymethylmethacrylate,” Appl. Phys. Lett. 94, 111912 (2009).
[CrossRef]

D. A. Higgins, T. A. Everett, A. F. Xie, S. M. Forman, and T. Ito, “High-resolution direct-write multiphoton photolithography in poly(methyl methacrylate) films,” Appl. Phys. Lett. 88, 184101 (2006).
[CrossRef]

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing DE by heating phase gratings formed by femtosecond laser irradiation in poly (methyl methacrylate),” Appl. Phys. Lett. 94, 241122 (2009).
[CrossRef]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92, 091120 (2008).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

J. H. Si, J. R. Qiu, J. F. Zhai, Y. Q. Shen, and K. Hirao, “Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,” Appl. Phys. Lett. 80, 359–361 (2002).
[CrossRef]

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008).
[CrossRef]

Chem. Papers (1)

F. Szocs, “Free radicals in x-ray irradiated poly (methylmethacrylate) from the point of view of ESR dosimetry,” Chem. Papers 53, 137–139 (1999).

Chem. Phys. Lett. (1)

J. Si, Z. Meng, S. Kanehira, J. Qiu, B. Hua, and K. Hirao, “Multiphoton-induced periodic microstructures inside bulk azodye-doped polymers by multibeam laser interference,” Chem. Phys. Lett. 399, 276–279 (2004).
[CrossRef]

Chem. Rev. (3)

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823–1848 (1999).
[CrossRef]

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196(2005).
[CrossRef]

N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong, “Models for laser ablation of polymers,” Chem. Rev. 103, 519–552 (2003).
[CrossRef]

Electrophoresis (2)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27–40 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser-photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Top. Quantum. Electron. 14, 1370–1381 (2008).
[CrossRef]

J. Appl. Phys. (2)

M. Prasad, P. F. Conforti, and B. J. Garrison, “On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate),” J. Appl. Phys. 101, 103113 (2007).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009).
[CrossRef]

J. Appl. Polym. Sci. (2)

H. Y. Kaptan and O. Guven, “Effect of γ-irradiation dose for the oxygen diffusion into polymers,” J. Appl. Polym. Sci. 64, 1291–1294 (1997).
[CrossRef]

H. Y. Kaptan and L. Tatar, “An electron spin resonance study of mechanical fracture of poly(methyl methacrylate),” J. Appl. Polym. Sci. 65, 1161–1167 (1997).
[CrossRef]

J. Laser Appl. (1)

D. F. Farson, H. W. Choi, C. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluidic channels in poly (methyl methacrylate),” J. Laser Appl. 18, 210–215 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

M. Haiducu, M. Rahbar, I. G. Foulds, R. W. Johnstone, D. Sameoto, and M. Parameswaran, “Deep-UV patterning of commercial grade PMMA for low-cost, large-scale microfluidics,” J. Micromech. Microeng. 18, 115029–115035 (2008).
[CrossRef]

H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (3)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003).
[CrossRef]

C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, and S. Metev, “Femtosecond-laser induced formation of grating structures in planar polymer substrates,” J. Opt. A: Pure Appl. Opt. 7, 493–501 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Advanced Mater. (1)

M. Velter-Stefanescu, O. G. Duliua, and N. Preda, “On the relaxation mechanisms of some radiation induced free radicals in polymers,” J. Optoelectron. Advanced Mater. 7, 985–989(2005).

J. Phys. D (1)

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, R. Osellame, S. N. B. Bhaktha, S. Turrell, A. Chiappini, A. Chiasera, M. Ferrari, M. Mattarelli, M. Montagna, R. Ramponi, G. C. Righinini, and D. Narayana Rao, “Direct writing of waveguides and gratings in ‘BACCARAT’ glass using femtosecond pulses,” J. Phys. D 42, 205106 (2009).
[CrossRef]

J. Polym. Sci. Polym. Phys. (2)

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structures induced by irradiation of femtosecond laser pulse in polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 537–544(2002).
[CrossRef]

S. Katayama, M. Horiike, K. Hirao, and N. Tsutsumi, “Structure induced by irradiation of femtosecond laser pulse in dyed polymeric materials,” J. Polym. Sci. Polym. Phys. 40, 2800–2806 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765–L767 (2006).
[CrossRef]

Laser Phys. (1)

W. Watanabe, “Femtosecond filamentary modifications in bulk polymer materials,” Laser Phys. 19, 342–345 (2009).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

S. Juodkazis, K. Yamasaki, A. Marcinkevicius, V. Mizeikis, S. Matsuo, H. Misawa, and T. Lippert, “Microstructuring of silica and polymethylmethacrylate glasses by femtosecond irradiation for MEMS applications,” Mater. Res. Soc. Symp. Proc. 687, B5.25 (2002).

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Nat. Phot. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Phot. 2, 219–225 (2008).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007).
[CrossRef]

Nature (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

A. Carrington and G. Stein, “Free radical formation and oxygen effect in irradiated polymethylmethacrylate,” Nature 193, 976 (1962).
[CrossRef]

Opt. Commun. (2)

S.-H. Cho, W.-S. Chang, K.-R. Kim, and J. W. Hong, “Femtosecond laser embedded grating micromachining of flexible PDMS plates,” Opt. Commun. 282, 1317–1321 (2009).
[CrossRef]

K. C. Vishnubhatla, S. Venugopal Rao, R. S. S. Kumar, M. Ferrari, and D. Narayana Rao, “Optical characterization of micro-structures in silicate, FOTURAN™ and tellurite glasses inscribed by femtosecond laser direct writing,” Opt. Commun. 282, 4537–4542 (2009).
[CrossRef]

Opt. Eng. (1)

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44, 051105(2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Plasmas (1)

E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation threshold for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002).
[CrossRef]

Proc. SPIE (4)

Y. V. White, M. Parrish, X. Li, L. M. Davis, and W. Hofmeister, “Femtosecond micro- and nano-machining of materials for microfluidic applications,” Proc. SPIE 7039, 70390J (2008).
[CrossRef]

K. Wang, D. Klimov, and Z. Kolber, “Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator,” Proc. SPIE 6766, 67660Q (2007).
[CrossRef]

K. Ohta, M. Kamata, M. Obara, and N. Sawanobori, “Optical waveguide fabrication in new glasses and PMMA with temporally tailored ultrashort laser,” Proc. SPIE 5340, 172 (2004).
[CrossRef]

H. Tang, H. Jiu, B. Jiang, J. Cai, H. Xing, Q. Zhang, W. Huang, and A. Xia, “Three-dimensional optical storage recording by microexplosion in a doped PMMA polymer,” Proc. SPIE 5643, 258–263 (2005).
[CrossRef]

Radiat. Eff. Defects Solids (1)

L. Torrisi, A. Lorusso, V. Nassisi, and A. Picciotto, “Characterization of laser ablation of polymethylmethacrylate at different laser wavelengths,” Radiat. Eff. Defects Solids 163, 179–187(2008).
[CrossRef]

Radiat. Phys. Chem. (1)

R. E. Samad, L. C. Courrol, A. B. Lugão, A. Z. de Freitas, and N. D. V. Junior, “Production of color centers in PMMA by ultrashort laser pulses,” Radiat. Phys. Chem. 79, 355–357(2010).
[CrossRef]

Rev. Laser Eng. (1)

S. Baudach, J. Kruger, and W. Kautek, “Femtosecond laser processing of soft materials,” Rev. Laser Eng. 29, 705–709(2001).

Sens. Actuators B: Chem. (1)

S. Demming, A. Llobera, R. Wilke, and S. Büttgenbach, “Single and multiple internal reflection poly(dimethylsiloxane) absorbance-based biosensors,” Sens. Actuators B: Chem. 139, 166–173 (2009).
[CrossRef]

Thin Solid Films (1)

H. Mochizuki, W. Watanabe, Y. Ozeki, K. Itoh, K. Matsuda, and S. Hirono, “Fabrication of diffractive optical elements inside polymers by femtosecond laser irradiation,” Thin Solid Films 518, 714–718 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics